Prevodjenje programskih jezika — beleSke sa predavanja Jezici i gramatike

Prevodjenje programskih jezika — beleske sa
predavanja
Jezici i gramatike

Milan Bankovi¢

*Matematizki fakultet,
Univerzitet u Beogradu

Jesenji semestar 2025/26.

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
L Azbuke, reti i jezici

Pregled

Azbuke, redi i jezici

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
L Azbuke, reti i jezici
L Azbuka i ret

Azbuka i re¢

Definicija 1

Azbuka ¥ je konacan, neprazan skup elemenata koje nazivamo slovima
ili simbolima azbuke. Re¢ w = ajay . ..a, nad X je bilo koji konacan
niz simbola a; € ¥. Specijalno, postoji i prazna re¢ koju obi¢no
oznacavamo sa €. Skup svih re¢i nad ¥ oznadavamo sa X*. Broj
simbola od kojih se sastoji re¢ w nazivamo duZinom re¢i w i
ozna&avamo sa |w|. Specijalno, prazna re¢ e je duZine nula: |e| = 0.

Primedba

Primetimo da re¢i nad azbukom ¥ ima beskonaéno mnogo, iako su sve
re¢i konaéne duZine. Ovo je zato $to konacnih duZina ima beskonaéno
mnogo (skup prirodnih brojeva Np)

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
L Azbuke, reti i jezici
L Azbuka i ret

Azbuka i re¢

Primer

Neka je ¥ = {0,1}. Reéi nad ovom azbukom su sve kona&ne niske nula i jedinica (npr. 0,
010, 11110, i sl.) Ovu azbuku nazivacemo i binarnom azbukom, jer se u pomocu nje
mogu zapisivati binarni brojevi. DuZine navedenih re&i su: |0| = 1, |010] = 3, |[11110| = 5.

Primer

Azbuka koju éemo &esto koristiti u nasim primerima je ¥ = {a, b}. Primeri re¢i nad ovom
azbukom su baba, abba, abab, aaaa, bbaaaabb ...

Primer

Veéina modernih programskih jezika kao azbuku koriste ASCII skup karaktera. Ova
azbuka ima 128 simbola. Svi programi su zapravo ASCII tekstualni fajlovi, te se mogu
razumeti kao nizovi ASCII karaktera, tj. kao re¢i nad ovom azbukom.

Primer

S obzirom da sintaksni analizator na ulazu ima niz tokena, moZemo razumeti da su nizovi
tokena zapravo re¢i nad azbukom ¢&iji su simboli tokeni.

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
L Azbuke, reti i jezici
L Azbuka i ret

Dopisivanje reci

Definicija 2

Neka su date dve re¢i u = ayay...ap i v = biby ... by, nad azbukom ¥. Tada definisemo:
u-v:i=ajay...apbiby ... by. Operaciju - : ¥* x ¥* — ¥* nazivamo operacijom
dopisivanja (ili konkatenacije) re¢i. Specijalno, definiSemo: u-e =¢ - u = u za svaku re¢
u€E .

Primedba
MozZe se dokazati da vaZi: |u - v| = |u| + |v/|.

Primedba

Lako se vidi da je (X*,-) nekomutativni monoid. Operacija - je asocijativna, ali ne i
komutativna. Jedini invertibilni element ovog monoida je njegov neutralni element ¢.

Primedba

Umesto u - v &esto pisemo samo uv.

Primer

Dopisivanjem re¢i baba i abba dobijamo re¢ babaabba.

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
L Azbuke, reti i jezici
L Azbuka i ret

Stepen redi

Definicija 3
Operacija n-tog stepena re¢i w" definiSe se rekurzivno na sledeci
nacin:
mwl=¢
B wtl=w

m n-ti stepen redi nastaje dopisivanjem reci same na sebe n puta
m Operacija stepena ima uobiajene osobine: w" - w™ = w"+m,
(Wn)m = Wn-m

Primer

(ab)® = ababab

n_W

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
L Azbuke, reti i jezici
L Azbuka i ret

Jezik

Definicija 4

Jezik nad azbukom % je bilo koji podskup od ¥*.

Jezik moZe biti kona&an ili prebrojivo beskonacan.

Neka je data azbuka ¥ = {a, b}. Neki primeri jezika nad ovom azbukom su:

m Skup Ly = {e,a, b, aa, bb, ab, ba} je jezik svih re¢i duZine najviSe dva. Ovaj

Jezik je konacan.

Skup Ly = {a, aa, aaa, aaaa, ... } je jezik svih rei koje se sastoje samo iz slova

a. Ovaj jezik je beskonacan.

Neka je L3 skup svih re¢i nad ¥ takvih da sadrZe jednak broj pojavljivanja slova

a i b. Ovo je jedan (beskona&an) jezik nad ¥.

m Neka je Ly skup svih re¢i nad ¥ takvih da sadrZe paran broj pojavljivanja slova
a. Ovaj skup je jedan jezik nad ¥.

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
L Azbuke, reti i jezici
L Azbuka i ret

Jezik

VazZna primedba

Jezik @ = {} je prazan jezik. Ovaj jezik postoji nad svakom
azbukom. Takodje, nad svakom azbukom postoji i jezik L. = {e}.
Ova dva jezika nisu jednaka (ovaj drugi ima jednu re€ u sebi, dok
je prvi prazan).

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
L Azbuke, reti i jezici
L Azbuka i ret

Operacije nad jezicima

Kako su jezici skupovi, nad njima su definisane sve uobitajene skupovne operacije:
n L1UL2:{W | WGL]\/WELQ}
[] L]_ﬂLzZ{W| WEL]/\WEI_2}
[] L]_\L2:{W | WELl/\W¢L2}
m CL=X"\L

Dodatno, definiSemo i neke specifi¢ne operacije za jezike:
Definicija 5
m Dopisivanje jezika: Ly - Ly ={u-v |u € L1 Av € Ly}
Stepen jezika: L® = L. = {e}, L't = L. L
Klinijevo zatvorenje (iteracija): L* = | Ji2o Lk = LPU Lt U L2 U...
Pozitivno zatvorenje: LT = | J32, Lk = 1 U [2U ...
Opcioni operator: L' = LU {e}

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
L Azbuke, reti i jezici
L Azbuka i ret

Operacije nad jezicima

Osobine operacija nad jezicima

m Vazi L* = LT U {e}, ali ne mora da vazi LT = L*\ {e}
m Akoc €L, tadac € LT, dok e ¢ L*\ {e}

m Ukoliko jezik L sadrzi bar jednu re€ razli¢itu od prazne reéi, jezici L* i LT su
beskonaéni
m Akoje w € Li w # ¢, tada su w?, w? w3, ... razlitite redi koje sve pripadaju

ovim jezicima
Vazi L’ = L akko e € L
Operacija dopisivanja jezika je asocijativna, ali nije komutativna
m Ove osobine slede iz osobina operacije dopisivanja za reti
m Neutralni element za operaciju dopisivanja je L. = {e} (Lc-L=L-L. = L)
mlo-L={eu|uel}={u|uel}=1L
mVaZziLl- @ =0
m Ovo je zato $to je & prazan skup
m Vazi L‘(L1UL2)=L~L1ULAL2
mxel-(LUL)&eJuw. x=uwAuelLAvelLUL < 3uv. x=uvAue
LA(velivve L) e uw.(x=uAuelAvel)V(x=uAuelAve
L)e (uv. x=uvAuelAvel)V@Bu.x=uAuelAvelL)sxe
L-Liyvxel-Lhexel - LUL-L

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
L Azbuke, reti i jezici
L Azbuka i ret

Operacije nad jezicima

Da li vaZi ova osobina?

L-(LlﬁLz)ZL-LlﬂL~L2

U jednom smeru vaZzi

xel-(LiNk) & Juv.x=uvAvuelAveL Nl < Juv. x=uvAueE
LnveliNnvelh s Tuv(x=uwAuelAvelh)A(x=uvAuelAve
L)= Fuv.x=uvAuelAvell))ABuv.x=uAuelAveLlL)sxe
L-LyAxel-Lysxel-LinL-Ly

U drugom smeru ne vazil!!

Ovo je zato $to u logici prvog reda implikacija
3z. p(z) A q(z) = (3z. p(z)) A (3z. q(z)) vaZzi samo u jednom smeru.

Kontraprimer

L ={a,aa}, L1 = {a}, Ly = {aa}. Jezici L i Ly su disjunktni, pa je L- (L3 N L)
prazan. Sa druge strane, re¢ aaa pripada i jeziku L - L i jeziku L - Lp, pa presek ovih
jezika nije prazan.

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike

LRegularni jezici i regularni izrazi

Pregled

Regularni jezici i regularni izrazi

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike

LRegularni jezici i regularni izrazi

L Regularni jezici
Regularni jezici

Klasa regularnih jezika nad azbukom ¥ (u oznaci R(X)) je najmanji skup
jezika nad X koji zadovoljava sledece osobine:

m Prazan jezik & je regularan

Jezik L. = {e} je regularan

Za svaki simbol a € ¥, jezik {a} je regularan

Ako su Ly i Ly regularni, tada su i jezici Ly U Ly i Ly - Ly regularni
Ako je L regularan, tada je i jezik L* regularan

Regularni jezici su oni i samo oni jezici koji se mogu dobiti polazeéi od
jezika &, L. i {a} (a € X), kona&nom primenom operacija unije,
nadovezivanja i Klinijevog zatvorenja.

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
LRegularni jezici i regularni izrazi

L Regularni jezici

Primeri

m Neka je w € X* proizvoljna re¢ nad X.. Tada je jezik {w} regularan.

Zaista, ako je w = a1az ... ap, tada je {w} ={a1} - {ax} ... - {an}, pa je
regularan.
m Svaki konacan jezik L = {w1,ws, ..., w,} je regularan. Zaista, on se moZe

predstaviti kao {w;} U {ws} U...U{w,}, pa je regularan.

m Postoje i beskonacni regularni jezici: oni se dobijaju primenom operacije
Klinijevog zatvorenja

m Jezik {a" | n > 0} = {¢, a,aa, aaa, ... } je regularan, jer se moZe
predstaviti kao {a}*

m Jezik {a"b™ |n,m > 0} je regularan, jer se moZe predstaviti kao {a}*{b}*

m Jezik X je regularan, jer se sastoji iz svih jednoslovnih reci, pa je konacan

m Jezik * (skup svih re¢i nad ¥) je regularan, jer se dobija primenom
Klinijevog zatvorenja na jezik ¥

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
LRegularni jezici i regularni izrazi

L Regularni jezici

Regularni jezici i operacije nad jezicima

U odnosu na koje operacije je klasa regularnih izraza zatvorena?

Iz same definicije sledi da je klasa regularnih jezika zatvorena za uniju
Moze se pokazati da je klasa regularnih jezika zatvorena i za ostale
skupovne operacije:

m Presek dva regularna jezika je regularan

m Komplement regularnog jezika je regularan

m Razlika dva regularna jezika je regularan
Dokaz ove Cinjenice nije trivijalan: ostavljamo ga za kasnije!!
Takodje, iz definicije sledi da je klasa regularnih jezika zatvorena za
operaciju dopisivanja jezika:

m Posledica: ako je L regularan jezik, tada je i L regularan jezik za svako

i € Ng

Sli¢no, iz definicije sledi i da su jezici L’ = LU {e} i LT = L - L* takodje
regularni, ako je L regularan

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike

LRegularni jezici i regularni izrazi

LRegulami izrazi

Regularni izrazi

Sta su regularni izrazi?

Regularni izrazi predstavljaju notaciju za kompaktno opisivanje regularnih jezika. U
osnovi, iz skupovnog opisa regularnih izraza izbacujemo viti¢aste zagrade, a
operator unije U zamenjujemo operatorom | (,,ili" operator).

Definicija 7
Svakom regularnom jeziku pridruZujemo regularni izraz na sledeci nacin:
m Regularnom jeziku & pridruZujemo regularni izraz &
m Regularnom jeziku {e} pridruZujemo regularni izraz €
m Za svako a € X, regularnom jeziku {a} pridruZujemo regularni izraz a
m Ako su regularnim jezicima Ly i Ly redom pridruZeni regularni izrazi ry i rp, tada
Jezicima Ly - Ly i Ly U Ly pridruZujemo regularne izraze riry i ri|ra respektivno
m Ako je regularnom jeziku L pridruZen regularni izraz r, tada regularnom jeziku
L* pridruZujemo regularni izraz r*

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike

LRegularni jezici i regularni izrazi

LRegulami izrazi

Primeri

Primer

m Zaw € X jeziku {w} pridruZujemo regularni izraz w

m Jeziku {wi, wa, ..., w,} pridruZujemo regularni izraz
wi|wal ... |wpy

m Jeziku {a" | n > 0} pridruZujemo regularni izraz a*

m Jeziku {a"b™ | n,m > 0} pridruZujemo regularni izraz a* b*

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
LRegularni jezici i regularni izrazi

LRegulami izrazi

Regularni izrazi — napomene

Ekvivalentnost izraza

m Dva regularna izraza su ekvivalentna ako definisu isti regularni jezik

m Jasno je, s obzirom na definiciju regularnih operatora i osobina odgovarajuéih
operacija nad jezicima, da Ce npr. izraz p|q biti ekvivalentan izrazu g|p, kao i
da Ce izraz (pq)r biti ekvivalentan izrazu p(qr)

m Medjutim, postoje i regularni izrazi koji uop$te nisu ,,sli¢ni”, a ekvivalentni su

m Pitanje ekvivalentnosti regularnih izraza nije uopste trivijalno; odgovor na ovo
pitanje da¢emo kasnije

m Posledi¢no: regularni izraz koji predstavlja neki regularni jezik L i opStem
sluéaju nije jedinstven

Prioritet operatora

m Prilikom zapisivanja regularnih izraza, najvedi prioritet ima operator zatvorenja,
zatim operator dopisivanja, i na kraju ,,ili" operator

m Prioritet se moZe promeniti zagradama

m Na primer, izraz a|bc* je ekvivalentan izrazu a|(b(c*))

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike

LRegularni jezici i regularni izrazi

LRegulami izrazi

Primeri

m Neka je ¥ = {0,1}. Jezik svih re¢i nad ovom azbukom koje
sadrZe dve uzastopne nule je regularan i moZe se opisati
izrazom (0[1)*00(0|1)*

m Jezik svih re¢i nad azbukom ¥ = {0, 1} koje sadrZe paran broj
nula je takodje regularan i moZe se opisati izrazom
(1*01*0)*1*

m Neka je ¥ skup svih ASCII simbola. Jezik koji sadrZi sve

identifikatore programskog jezika C se moZe opisati izrazom
(alb|...|z|AIB|...|Z|)(alb]|...|z|A|B]...|Z|]0|1]...|9)*

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
LRegularni jezici i regularni izrazi

LPro§ireni regularni izrazi

ProSireni regularni izrazi

Klase simbola

Neka su a1, a2,...,a, € X. lzraz [a1a> ... a,] predstavlja jezik {a1,a...,a,}. Sli¢no,
izraz ["ajaz ... a,| predstavlja jezik £ \ {a1,a2,...,an}.

Primer

Na primer, izraz [abc] ozna&ava isto $to i izraz a|b|c.

Intervali

Pretpostavimo da je azbuka X ureden skup, tj. da je definisana relacija potpunog poretka
=< nad azbukom Y. Pretpostavimo da su a i b simboli iz ¥ takvi da je a < b. Tada [a-b]
oznatava jezik {c | a < ¢ < b}. Sli¢no, [“a-b] oznadava jezik © \ {c | a < ¢ < b}.

Primer

Klase i intervali se mogu i kombinovati. Na primer, izraz [abc0-9] predstavija isto $to i
izraz a|b|c|0|1|2|3]4|5|6]7|8]9.

Napomena

Klase i intervali predstavljaju samo kraéi zapis regularnih izraza, tj. ne uti¢u na
izraZajnost regularnih izraza.

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike

LRegularni jezici i regularni izrazi

LPro§ireni regularni izrazi

ProSireni regularni izrazi

Jo$ neka prosirenja

m Ako regularni izraz r oznacava regularni jezik L, tada izrazi rt i r? oznatavaju
redom jezike L1 i L’

m Ako regularni izraz r oznadava regularni jezik L, tada izrazi r{”’}, r{*"’}, rim=}
i rim=n} oznacavaju, respektivno, jezike L™, U, Lyz, iy, L

Primer

Izraz a(ab){'=3} opisuje jezik {aab, aabab, aababab}, a izraz a’ ba™ opisuje jezik
{aba, abaa, abaaa, . .., ba, baa, baaa, . .. }.

Napomena

Znamo od ranije da su jezici L™, Lt i L7 regularni ako je L regularan. Sli¢no jezici
UM L7 i U, L su regularni kao kona&ne unije regularnih jezika. Najzad, jezik
Uz, L’ se moZe predstaviti kao L™ - L*, pa je regularan kao proizvod dva regularna
jezika. Odavde sledi da se navedenim prosirenjima regularnih izraza ne proSiruje
klasa jezika koji se mogu predstaviti, ve¢ se samo pojednostavljuje zapis.

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
LRegularni jezici i regularni izrazi

LPro§ireni regularni izrazi

Regularni izrazi i operacije nad jezicima

Sta sa ostalim skupovnim operacijama?

m Ranije je konstatovano da je klasa regularnih jezika zatvorena
za operacije preseka, razlike i komplementa skupa

m Ipak, ne postoje operatori kojima se mogu direktno opisati
ovakvi regularni jezici (kao %to je slu¢aj sa unijom)

m Otuda, nije tako o&igledno koji bi regularni izraz odgovarao
npr. preseku dva regularna jezika zadata nekim regularnim
izrazima r; i »

m Ipak, znamo da takav regularni izraz postoji

m Sistematski postupak za odredivanje regularnih izraza u
takvim slu¢ajevima pokazacemo kasnije

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
LRegularni jezici i regularni izrazi

LPro§ireni regularni izrazi

Regularni izrazi i operacije nad jezicima

Primer

Znamo da je jezik svih binarnih niski koje sadZe dve uzastopne nule
predstavljen npr. izrazom (0]|1)*00(0|1)*. Komplement ovog jezika
je takode regularan, ali nije oligledno koji bi mu izraz odgovarao.
MoZemo primeniti ad-hoc pristup i konstruisati izraz u zavisnosti
od konkretnog slucaja: ovde traZimo jezik svih reli koje ne sadrZe
dve uzastopne nule, a jedan izraz koji opisuje ovaj jezik bi mogao
da bude: 1*(01%)*0".

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
LRegularni jezici i regularni izrazi

LRegulami izrazi u leksi¢koj analizi

Regularni izrazi u leksi¢koj analizi

Koji su jezici regularni u praksi?

m U terminima regularnih jezika mogu se opisati razli¢iti jezici koji se srecu u
praksi:

m Celi i realni brojevi
m Datumi
m Razli¢iti formati za lozinke, korisnitka imena naloga i sl.
m Razni obrasci u tekstu
[oco
m Zbog toga su regularni izrazi veoma korisni u pretraZivanju i obradi teksta:
m Konzolni alat grep je primer alata za pretragu teksta zasnovan na regularnim
izrazima
m Vedina programskih jezika imaju ili ugradjenu podr3ku za regularne izraze
(npr. Perl) ili ih podrzavaju kroz odgovarajuce biblioteke

Leksi¢ka analiza

m Svaka klasa leksema (kojoj odgovara jedan token) predstavlja jedan jezik

m Ovi jezici su po pravilu regularni i mogu se opisati regularnim izrazima

m Otuda je prouavanje regularnih jezika veoma zna&ajno sa stanovista
konstrukcije leksi¢kih analizatora

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
LRegularni jezici i regularni izrazi

LRegulami izrazi u leksi¢koj analizi

Primeri

Primer

m Jezik identifikatora u C-u se moZe krace opisati regularnim
izrazom [a—zA — Z_|[a—zZA— Z_0 — 9]*.
m Jezik celobrojnih (dekadnih) konstanti u C-u se moZe opisati
regularnim izrazom [1 — 9][0 — 9]*[wUIL]{~2}
m Jezik oznacenih realnih konstanti se moZe opisati regularnim
izrazom ([0 — 9]|[1 — 9][0 — 9]*).[0 — 9]
NAPOMENA: poslednja dva izraza predstavijaju samo
aproksimacije stvarnih jezika i navedeni su kao ilustracija. Student
moZe za veZbu da pokusa da precizno definiSe izraze koji opisuju
odgovarajuce leksicke kategorije u jeziku C.

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
LRegularni jezici i regularni izrazi

LOgraniéenja regularnih jezika

Ogranicenja regularnih jezika

Sledeca lema se u literaturi obi¢no zove lema o razrastanju (engl. pumping
lemma):

Lema 1
Neka je L regularan jezik. Tada postoji neko p € N (koje zavisi samo od jezika
L), takvo da za svaku re¢ w € L za koju je |w| > p vaZi da se w moZe
predstaviti u obliku w = xzy, gde je |z| > 1, |xz| < p ixzKy € L za svako

k € Np.

Ovu lemu dokazaéemo kasnije.

Posledica

Da bismo dokazali da jezik L nije regularan, dovoljno je da pokaZemo da
mozZemo pronaci proizvoljno dugu re¢ w € L takvu da je nije moguce
predstaviti u opisanom obliku.

Lema o razrastanju se obi¢no koristi da se dokaZe da jezik nije regularan.

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike

LRegularni jezici i regularni izrazi

LOgraniéenja regularnih jezika

Ogranicenja regularnih jezika

Primer

Jezik L = {a"b" | n > 0} nije regularan. Zaista, pretpostavimo suprotno,
da jeste regularan. Tada prema prethodnoj lemi postoji neko p takvo da
zadovoljava uslove iz leme. Uzmimo re¢ aPbP. Ova re¢ pripada L i duZa je
od p. Otuda se ova reé mozve predstaviti u obliku aPbP = xzy, takvo da je
. Medjutim, iz |xz| < p
s/ed/ da jez=a' za neko i > 1, pa je zK = a¥. Otuda je re¢

xz¥y = aP~ "tk pP_ Lako se vidi da ova re¢ ne pripada jeziku L za bilo koje
k # 1, jer broj simbola a nece biti jednak broju simbola b. Kontradikcija.

|

VAZNA NAPOMENA

U jeziku iz prethodnog primera zahtevali smo da reci sadrZe jednak broj
a-ova i b-ova (isto n je u oba stepena). To nije isto kao da smo imali jezik
L’ ={a"b™ | m,n > 0}, gde broj a-ova i b-ova u redi moZe biti razli€it.
Jezik L’ jeste regularan i moZe se opisati izrazom a*b*.

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
LRegularni jezici i regularni izrazi

LOgraniéenja regularnih jezika

Ogranicenja regularnih jezika

m Jezik L = {a"b" | n > 0} je apstraktna varijanta jezika ,,uparenih zagrada”
m Ovakve konstrukcije se €esto javljaju u sintaksi programskih jezika:
m Svaka otvorena zagrada (u izrazima mora da ima odgovarajucu zatvorenu
zagradu)
m Svaki pocetak bloka { u C-u mora da ima odgovarajuéi kraj bloka }
m Svaki poletak bloka begin u Pascal-u mora da ima odgovarajuéi kraj bloka
end
m Svaka otvorena zagrada [za indeksiranje nizova mora da ima odgovarajuéu
zatvorenu zagradu |
m Svaki otvoreni tag u HTML-u mora da ima odgovarajuéi zatvoreni tag
[

m Odavde sledi da glavne sintaksne kategorije koje postoje u svim
programskim jezicima — izrazi i naredbe — ne mogu da se opi$u regularnim
izrazima

m Dakle, regularni izrazi ¢e nam biti korisni za leksi¢ku, ali ne i za sintaksnu
analizu

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike

L Kontekstno-slobodni Jjezici

Pregled

Kontekstno-slobodni jezici

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike

L Kontekstno-slobodni Jjezici

L Gramatike i jezici

Kontekstno slobodna gramatika

Kontekstno slobodna gramatika (KSG) je uredena &etvorka oblika
G=(X,N,S,P), gde je:

Definicija 8

m Y — azbuka nad kojom se gradi gramatika (skup terminala)
m N — konaé&ni skup nezavrsnih simbola (ili neterminala)
m S € N — poletni neterminal (ili aksioma)

m PC N x (NUZX)* - kona&ni skup pravila izvodjenja

Pravilo (A, o) € P zapisujemo kao A — « i &itamo ,,A izvodi o

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
L Kontekstno-slobodni Jjezici

L Gramatike i jezici

Kontekstno slobodna gramatika

Neka je G = (X, N, S, P), gde je:

m Y ={a b}

m N ={S} (t. S je jedini neterminal)

m P={S— aSh,5 — ¢}
Gramatike ¢emo Cesto zapisivati neformalno, zadavanjem samo skupa pravila. Na primer, za
gornju gramatiku, mogli smo napisati samo:

S — aSb
S — ¢

Po konvenciji, neterminale éemo ozna&avati velikim slovima, dok ¢emo terminale ozna&avati
malim slovima. Otuda, nije neophodno eksplicitno navoditi skupove ¥ i N. Takodje, po
konvenciji ée poletni neterminal biti onaj za koji se prvo navode pravila, te ni njega nije
neophodno eksplicitno naglasavati.

Gornju gramatiku ¢emo jo$ krace zapisivati i ovako:

S — aSb
| e

Uopste, pravila koja odgovaraju istom neterminalu éemo grupisati kori§c¢enjem ,,ili" operatora.
Napominjemo da je ovo samo kraci zapis, a ne bilo kakva sustinska izmena u odnosu na

prethodnu definiciju gramatike.

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
L Kontekstno-slobodni Jjezici

L Gramatike i jezici

Kontekstno slobodni jezici

m Relacija izvodjenja indukovana gramatikom G = (X, N, S, P) je binarna
relacija = nad skupom (X U N)* takva da u = v akko je u = aXp, a
v = avB, za neke o, 3, X iy, pri Cemu je X — v € P.

m [zvodenje u gramatici G je bilo koji lanac a1 = ap = ... = ap.

m Tranzitivno zatvorenje relacije => oznadavamo sa ==, a tranzitivno i
refleksivno zatvorenje sa =—>*.

m Receni¢na forma gramatike G = (X, N, S, P) je bilo koja re¢ o € (X U N)*
takva da S =" «, tj. takva da postoji izvodenje S — ... = a u
gramatici G.

m Jezik generisan gramatikom G (u oznaci L(G)) je skup svih zavrinih
reCeni¢nih formi gramatike G, tj. skup svih re¢i w € ¥* takvih da
S =* w, odnosno takvih da postoji izvodenje S = ... = w u
gramatici G.

m Za jezik L nad azbukom ¥ kaZemo da je kontekstno slobodan ako postoji
kontekstno slobodna gramatika koja ga generise.

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
L Kontekstno-slobodni Jjezici
L Gramatike i jezici

Kontekstno slobodni jezici

Vratimo se na gramatiku:

S — aSb
| e

Primer jednog izvodenja u ovoj gramatici je:

S — aSb = aaSbb — aaaSbbb — aaabbb

Sve reci u ovom izvodenju predstavljaju receniéne forme gramatike. Re¢
aaabbb predstavlja zavrsnu receni¢nu formu, jer se sastoji samo iz terminala.
Ova re¢ pripada jeziku ove gramatike.

Jezik generisan ovom gramatikom je L(G) = {a"b" | n > 0}.

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike

L Kontekstno-slobodni Jjezici

L Gramatike i jezici

Regularni i kontekstno slobodni jezici

m Gramatika iz prethodnog primera zapravo generiSe jezik
L(G) ={a"b" | n > 0}.

m Za ovaj jezik smo ranije dokazali da nije regularan.

m Ovo znadi da kontekstno slobodni jezici ne moraju biti
regularni.

m Specijalno, ,,uparivanje zagrada” nije problem za kontekstno
slobodne jezike.

m Obratno pitanje: da li regularni jezici moraju biti kontekstno
slobodni?

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike

L Kontekstno-slobodni Jjezici

L Gramatike i jezici

Regularni i kontekstno slobodni jezici

Teorema 1

Svaki regularan jezik je kontekstno slobodan.

Potrebno je dokazati da se svaki regularan jezik moZe generisati gramatikom:

m Jezik & se moZe generisati bilo kojom gramatikom sa praznim skupom pravila
m Jezik {e} se moZe generisati gramatikom S — €
m Jezik {a} za proizvoljno a € ¥ se moZe generisati gramatikom S — a
m Ako su jezici Ly i Ly generisani redom gramatikama Gy = (X, Ny, S1, P1) i
Gy = (27 No, 527 Pz), tada:
m Jezik L1 U L, e biti generisan gramatikom
G=(Z,NlUNQU{S},S,PlLJPzU{S — 51,5%52})
m Jezik Ly - L, Ce biti generisan gramatikom
G = (Z, N1 @] Nz (@] {5}, S, P1 @] P2 @] {S — 5152})
m Ako je jezik L generisan gramatikom G = (X, N, S, P), tada Ce jezik L* biti
generisan gramatikom G' = (X, NU{S'},S’,PU{S' — SS',S' — ¢})

Odavde skup svih kontekstno slobodnih jezika mora sadrZati sve regularne jezike.

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike

L Kontekstno-slobodni Jjezici

L Gramatike i jezici

Rekurzija u gramatikama

Definicija 10
Za pravilo gramatike kaZemo da je rekurzivno ako je oblika A — aApB
(o, B € (XU N)*), tj. ako se simbol sa leve strane pojavljuje i u desnoj

strani pravila. Specijalno, pravilo je levo rekurzivno ako je oblika
A — Aaq, a desno rekurzivno ako je oblika A — aA.

Primer

U gramatici S — aSb | e, pravilo S — aSb je rekurzivno pravilo. Ovo
pravilo nije ni levo ni desno rekurzivno, vec je rekurzivno po sredini.

Primer

U gramatici S — SAB, A— aA | B, B— ab | Ba, pravila

S — SAB i B — Ba su levo rekurzivna, dok je pravilo A — aA
desno rekurzivno.

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
L Kontekstno-slobodni Jjezici

L Gramatike i jezici

Rekurzija u gramatikama

m Rekurzija moZe biti i posredna — na primer: S — aAb | ¢,
A— bSa|a

m MozZe se pokazati da gramatika u kojoj nema rekurzije (ni
posredne ni neposredne) moZe generisati samo konaZne jezike

m Otuda, gramatike koje ne sadrze rekurziju nisu naro€ito
interesantne

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
L Kontekstno-slobodni Jjezici
LStablo izvodenja

|zvodenje nalevo i nadesno

Primer

Neka je data gramatika G:

S — (L)
| a

L — SL
| S

Re¢ (a(aa)) pripada jeziku L(G). Jedno izvodenje ove re&i bi moglo da izgleda ovako:
S=(l)= (SL)= (aLl) = (aS) = (a(L)) = (a(SL)) = (a(al)) =
(a(as)) = (a(aa))

Ovakvo izvodenje se naziva i izvodenje nalevo (ili najlevlje izvodenje), jer se u svakom
koraku pravilo primenjuje na najlevlji neterminal. Analogno, postoji i izvodenje nadesno
(ili najdesnje izvodenje): S — (L) = (SL) = (SS) = (S (L)) = (S(S L)) =
(5(59)) = (S(S5a)) = (S(aa)) = (a(aa))

Napomene

m Za svaku ret jezika L(G) postoji bar jedno najlevlje i jedno najdednje izvodenje
m Mogu postojati izvodenja koja nisu ni najlevlja ni najdesnja
m Pitanje: da li je najlevlje (najde3nje) izvodenje proizvoljne re&i jezika jedinstveno?

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
L Kontekstno-slobodni Jjezici
LStablo izvodenja

Stablo izvodenja

Definicija 11
Neka je dato izvodenje S — a; = ap = ... = w re¢i w € L* jezika
L(G). Stablo izvodenja koje odgovara datom izvodenju se formira na sledeci
nacin:
m U korenu stabla se nalazi po&etni simbol S
m Ako u nekom koraku imamo list stabla u kome se nalazi neterminal A, pri
gemu je na taj neterminal A u datom izvodenju primenjeno pravilo
A — X1 X5... Xk, tada se u stablo kao potomci ovog &vora dodaju
&vorovi u kojima se nalaze simboli X1, Xo, ..., Xi
m Postupak se zavrsava kada u listovima imamo samo terminale

m Obilaskom listova stabla izvodenja sa leva na desno dobija se re¢ w
m U unutrasnjim &vorovima stabla nalaze se neterminali koji u€estvuju u
izvodenju

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
L Kontekstno-slobodni Jjezici
LStablo izvodenja

Stablo izvodenja

Primer

Najlevljem izvodenju iz prethodnog primera odgovara sledece stablo izvodenja:

S
_____ V2N T N
/ | \
(L)
VAN W
/ \
S L
| |
a S
PRV I W
/ | \
(L)
-/ ___
/ \
S L
| |
a S
|
a

Za veZbu: uveriti se da najdesnjem izvodenju iz prethodnog primera odgovara to isto
stablo izvodenja.

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
L Kontekstno-slobodni Jjezici

LJednoznaéne i viSezna&ne gramatike

Jednoznadne i vieznaéne gramatike

Posmatrajmo sledecu gramatiku:

E — E+E
| a

kao i re¢ a4+ a+ a. Ova re¢ pripada jeziku gramatike, jer npr. imamo izvodenje:
E—E+E=—a+E=—a+E+E= a+a+E= a+ a+ a. Ovo izvodenje je
najlevije i odgovara mu sledece stablo izvodenja:

E
/1N
/1N
E + E
| _/ 1\
| /1 N\
a E + E
| |
a a

Lako se vidi da najdesnjem izvodenju:
E—E+E—E+E+E—=—E+E+a=— E+a+a=> a+ a+ a odgovara isto
stablo izvodenja.

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
L Kontekstno-slobodni Jjezici

LJednoznaéne i viSezna&ne gramatike

Jednoznadne i vieznaéne gramatike

Posmatrajmo ponovo gramatiku i re¢ iz prethodnog primera. Izvodenje:
E—E+E— E+E+E— a+E+E—=— a+a+ E = a+ a+ a je takode jedno
najlevije izvodenje re¢i a+ a+ a. Ovom izvodenju odgovara stablo:

E
/1L
/1 0\
E + E
/1 \C |
/1 N\ |
S + S a
| |
a a

Kao i ranije, postoji i najdesnje izvodenje koje odgovara istom ovom stablu:
E—=E+E—E+a—E+E+a—E+ata=—ata+a

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
L Kontekstno-slobodni Jjezici

LJednoznaéne i viSezna&ne gramatike

Jednoznadne i vieznaéne gramatike

Definicija 12

m Za dva izvodenja iste re¢i jezika L(G) kaZemo da su ekvivalentna ukoliko im odgovara isto
stablo izvodenja

m Za gramatiku G kaZemo da je jednozna¢na ako za svaku re¢ w € L(G) postoji jedinstveno
stablo izvodenja (tj. ako su sva izvodenja re¢i w medusobno ekvivalentna)

m Gramatika je viseznacna ako nije jednozna&na

Primedba

m Za svako stablo izvodenja re¢i w u gramatici G postoji jedinstveno najlevlje (najde¥nje)
izvodenje koje mu odgovara

m Otuda je gramatika jednozna&na akko za svaku re¢ w € L(G) postoji jedinstveno najlevlje
(najde3nje) izvodenje

Napomene

m Viseznalnost je svojstvo gramatike, a ne jezika

m Isti jezik moZe biti generisan razli¢itim gramatikama, pri ¢emu neke mogu biti jednoznacne,
a neke viSeznatne

m Jezik je inherentno viSeznacan ako su sve gramatike koje ga generiSu viSezna¢ne

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
L Kontekstno-slobodni Jjezici

LJednoznaéne i viSezna&ne gramatike

Jednoznadne i vieznaéne gramatike

Gramatika iz prethodnog primera je viseznacna, jer smo videli da re¢ a+ a+ a
ima dva razli¢ita stabla izvodenja:

E
-/ 1\ -/
[\
+
-/
/

E
| | | |

a a a a

/
E
|
|
a

+ — —m
-
|
|
~
~
|

p — —m

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
L Kontekstno-slobodni Jjezici

LJednoznaéne i viSezna&ne gramatike

Jednoznadne i vieznaéne gramatike

Stablima izvodenja sa prethodnog slajda odgovaraju sledeca stabla apstraktne
sintakse:

+ +
_/ _ _/ _

/ \ / \

a + + a

-/ \C -/ \C

U prvom slu&aju imamo desnu asocijativnost operatora +, a u drugom slucaju
levu asocijativnost. Dakle, semantika izraza a + a + a e zavisiti od toga koje
izvodenje izaberemo.

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
L Kontekstno-slobodni Jjezici

LJednoznaéne i viSezna&ne gramatike

Jednoznadne i vieznaéne gramatike

Viseznaénost: uzroci i posledice

m ViSeznalnost gramatike, po pravilu, ima za posledicu visezna&nost
semantike jezika
m Zbog toga je neophodno izbedi viseznagnost kada god je to moguce
m U ovom primeru, uzrok viSezna€nosti je nedefinisana asocijativnost
operatora +
m Na koji nagin moZemo pravilima gramatike definisati asocijativnost
operatora?
m Problem je u dvostrukoj rekurziji u pravilu E — E + E
m Levo E omogucava levu asocijativnost, jer je moguce izvesti
E— E+E+E
~—~—

m Desno E omogucava desnu asocijativnost, jer je moguce izvesti
E—E+E+E
——

m Osnovni princip: leva asocijativnost se postiZe levom rekurzijom, a desna
desnom

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
L Kontekstno-slobodni Jjezici

LJednoznaéne i viSezna&ne gramatike

Jednoznadne i vieznaéne gramatike

Posmatrajmo sada gramatiku:
E — E+a
| a

Lako se moZe videti da je ova gramatika ekvivalentna prethodnoj, u smislu da generise
isti jezik. Medutim, ova gramatika je jednozna&na. Jedino najlevije izvodenje reci
a+a+ a uovoj gramatici je: E—> E+a—=— E+a+a—=—> a+ a+ a (ovo je ujedno i
najdesnje izvodenje). Jedinstveno stablo izvodenja ove redi je:

E
/1 \C
/1 0\
E S a
/ 1\
/1 0\
15 + a
|
a

Ovoga puta, leva asocijativnost je garantovana.

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
L Kontekstno-slobodni Jjezici

LJednoznaéne i viSezna&ne gramatike

Jednoznadne i vieznaéne gramatike

Ako Zelimo desnu asocijativnost operatora +, moZemo da koristimo gramatiku:

E — a+E
| a

Jedino najlevije izvodenje re¢i a+ a+ a u ovoj gramatici je:
E=— a+E = a+a+ E = a+ a+ a. Jedinstveno stablo izvodenja je:

/

a

E

-/ 1\
[\
+

Ovoga puta imamo desnu asocijativnost.

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
L Kontekstno-slobodni Jjezici

LJednoznaéne i viSezna&ne gramatike

Jednoznadne i vieznaéne gramatike

Posmatrajmo gramatiku:
E — E+E

| ExE

| a
U ovoj gramatici opet imamo visezna&nost, ovog puta iz vise razloga: pored nedefinisane
asocijativnosti, imamo nedefinisan i prioritet operatora. Na primer, ako imamo re¢ jezika
a+ ax* a, moZemo imati sledece najlevije izvodenje:
E—E+E— a+E—=— a+E+«E—=— a+axE = a+ axa. Sa druge strane,
moZemo imati i sledece najlevlje izvodenje:
E— ExE— E+E+«E = a+ ExE = a+axE = a+ axa. Ovim izvodenjima

odgovaraju sledeca dva stabla:

/

E

/1N -/
I\ /

¥

/

* ——m
~
1
1
~

E
I -/
I
a

~
1
p— —

E
| | | I

a a a a

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
L Kontekstno-slobodni Jjezici

LJednoznaéne i viSezna&ne gramatike

Jednoznadne i vieznaéne gramatike

Primer

Stablima izvodenja sa prethonog slajda odgovaraju sledeca apstraktna sintaksna stabla:

+ *

-/ _ -/ _
/ \ / \
a * + a

-/ _ -/ _
/ \ / \
a a a a

Dakle, u prvom slucaju se izraz izratunava tako sto se prvo primeni operacija mnoZenja,
dok se u drugom slu¢aju prvo primenjuje operacija sabiranja. Opet imamo razli¢ita
znaclenja istog izraza!

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
L Kontekstno-slobodni Jjezici

LJednoznaéne i viSezna&ne gramatike

Jednoznadne i vieznaéne gramatike

Problem moZemo da pokusamo da resimo na stari nacin, fiksiranjem leve (ili desne)
asocijativnosti: posmatrajmo gramatiku:

E — E+a
| Exa
| a

Ova gramatika je sada jednozna&na: jedino najlevije izvodenje re¢i a + a x a je sada

E — Exa— E+axa— a+ axa. Medutim, ovo verovatno nije ono $to bismo Zeleli:

-/
/

\-
\

E
|
|
et a

\

a

E
/1N
|
¥

/
E
|
a

Mi bismo Zeleli da mnoZenje ima visi prioritet, ali to ovde nije tako.

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
L Kontekstno-slobodni Jjezici

LJednoznaéne i viSezna&ne gramatike

Jednoznadne i vieznaéne gramatike

Primer

Prva ideja koja nam pada na pamet je da probamo desnu asocijativnost:

E — a+E
| axE
| a

Jedino najlevlje izvodenje re¢i a+ a* a jesada E— a+ E — a+axE = a+ax*a.
Stablo izvodenja je sada:

/

a

E

-/ 1\
I\
¥

Sada deluje u redu. Izgleda da smo uspeli. Ili nismo?

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
L Kontekstno-slobodni Jjezici
LJednoznaéne i viSezna&ne gramatike

Jednoznadne i vieznaéne gramatike

Primer

Posmatrajmo ponovo desno rekurzivnu gramatiku sa prethodnog slajda:

E — a+E
| axE
a

i re¢ a* a-+ a. Ovoga puta imamo najlevije izvodenje:
E—=— axE = axa+ E = axa+ a, kao i stablo:

Opet imamo pogresan prioritet. Kako sad to?

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
L Kontekstno-slobodni Jjezici

LJednoznaéne i viSezna&ne gramatike

Jednoznadne i vieznaéne gramatike

Uzroci vieznaénosti ponovo

m U prethodnom primeru imali smo viSezna&nost usled nedefinisane
asocijativnosti i prioriteta
m Fiksiranjem leve (ili desne) rekurzije re3ili smo problem asocijativnosti, ali
ta je sa prioritetima?
m Zapravo, u gornjim reenjima oba operatora imala su jednak prioritet
m Redosled izvrSavanja operatora u slu€aju istih prioriteta odreden je
asocijativnoscu:
m Ako su operatori levo asocijativni, tada se izraz izracunava sa leva na desno
m Ako su operatori desno asocijativni, tada se izraz izraunava sa desna na
levo
m Otuda se kod desno asocijativne verzije gramatike u izrazu a + a * a prvo
izratunavalo mnoZenje (kao 3to i Zelimo), a u izrazu a * a + a se prvo
izratunavalo sabiranje (3to nije ono to Zelimo).

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
L Kontekstno-slobodni Jjezici

LJednoznaéne i viSezna&ne gramatike

Jednoznadne i vieznaéne gramatike

Primer

Posmatrajmo sledecu gramatiku:

T — Txa
| a
Ova gramatika je ekvivalentna sa prethodnim gramatikama. Medutim, sada za re¢ a + a * a imamo
sledece jedinstveno najlevije izvodenje:
E—E+T=—=T+T=a+T=a+Tx*a=>a+ axa. Sli¢no, za re¢ a* a+ a imamo
najlevije izvodenje: E—E+T— T+ T—=— T*a+ T — a%xa+ T — axa+a. Ovim
izvodenjima odgovaraju sledeca stabla:

E E

/N /N
/1 N\ / 1\
ER T ER T
| 2/ 1\ | |
| / 1\ T a
T T * a -/ 1\
| | / 1\
a a T * a

|

a

Sada je u oba slu¢aja prioritet u redu.

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
L Kontekstno-slobodni Jjezici

LJednoznaéne i viSezna&ne gramatike

Jednoznadne i vieznaéne gramatike

Resenje za prioritet operatora

m Prioriteti se reSavaju uvodenjem gramatic¢kih kategorija na vise
nivoa
U prethodnom primeru, E je izraz, a T je term

m lzraz je zbir termova

m Term je proizvod atoma

Operatori niZzeg prioriteta se navode na visem nivou u gramatici
Operatori viSeg prioriteta se navode niZe u gramatici

Operatori na istom nivou imaju isti prioritet

Sta ako Zelimo da moZemo da menjamo prioritet po potrebi?

m Tome u izrazima sluZe zagrade: treba ih uvesti u gramatiku!

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
L Kontekstno-slobodni Jjezici

LJednoznaéne i viSezna&ne gramatike

Jednoznadne i vieznaéne gramatike

Posmatrajmo gramatiku:
E — E4+T
| T
T — TxF
| F
F — (E)
| a
Re& ax a+ a pripada jeziku ove gramatike. Jedinstveno najlevlje izvodenje ove reci je:
E=E+T=T+T=T+F+T=F+*F+T=—a*xF+T=a*xa+T=a*xat+tF=—=axata Sa
druge strane, re¢ ax (a+ a), koja takode pripada jeziku ove gramatike ima najlevije izvodenje:
E=T=T+F=FxF=axF—=a*x(E)=ax(E+T)=ax(T+T)=ax(F+T)=
ax(a+ T)=>ax(a+ F)=>ax(a+a). Stabla ova dva izvodenja su:

E E
/1D |

/ 1\ T

E + T /1

| | / 1\

T F T % F
/12 | | -/ 1 \C
/1N | | /1N

T * F a F (E)
| | | A W
F a | I\
| a +

a

P —m— - m~
po—m—

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
L Kontekstno-slobodni Jjezici

LJednoznaéne i viSezna&ne gramatike

Jednoznadne i vieznaéne gramatike

Asocijativnost i prioritet

m Operatori istog prioriteta moraju imati istu asocijativnost
m U suprotnom, gramatika Ce biti vi¥eZna&na

Primer

Posmatrajmo gramatiku:

E — a+E
| E—a
| a

Re¢ a+ a — a sada ima dva najlevlja izvodenja. Jedno je:

E— a+E=— a+E—a=—a+a— a, adrugo je

E— E—a=— a+ E —a= a+ a— a. Za veZbu nacrtati odgovarajuca stabla
izvodenja i uveriti se da su razlicita.

Napomena

Ovo ne vaZi za operatore razli¢itog prioriteta koji ne moraju da imaju istu
asocijativnost.

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
L Kontekstno-slobodni Jjezici

LJednoznaéne i viSezna&ne gramatike

Jednoznadne i vieznaéne gramatike

Primer

Kompletna gramatika aritmetickih izraza sa &etiri osnovne raunske operacije bi mogla da izgleda ovako:

g = BT
| E-T
| T
T — TxF
| T/F
| F
— (E)
I

a

F

NajniZi prioritet imaju sabiranje i oduzimanje, koji su levo asocijativni. MnoZenje i deljenje imaju visi prioritet i takode su
levo asocijativni. Zagradama se prioritet moZe promeniti.

Primer

Ako Zelimo da u gramatiku uklju€imo i unarne operatore + i — (koji se zapisuju prefiksno), imali bismo gramatiku:

E — E+T
| E-T
| T

T — TxF
| T/F
| F

F = aHF
| —F
| A

A — (E)
| a

Unarni operatori imaju najvisi prioritet i zato su pri dnu gramatike.

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
L Kontekstno-slobodni Jjezici

LJednoznaéne i viSezna&ne gramatike

Jednoznadne i vieznaéne gramatike

Primer

Ovaj primer ukljuéuje fragment gramatike jezika C sa unarnim

+ i postfiksnim op: ot

A

o

>0 7o+

S
o

Na primer, niske #a -+ + i (+a) + -+ bi imale, respektivno, sledeca stabla izvodenja (kao i odgovarajuca apstraktna stabla):

E * E ++
/o | | |
/ \ ++ P *
* E | -/ \C |
| a / \ a
P P ++
-/ N\ |
/ \ A
P H -/ 1\
| C E)
A -/ \C
| / \
a *

P —=—T—m

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
L Kontekstno-slobodni Jjezici

LJednoznaéne i viSezna&ne gramatike

Jednoznadne i vieznaéne gramatike

Primer

Posmatrajmo sledeci primer fragmenta gramatike jezika C koji opisuje naredbe:

S — E
while(E) S
do S while(E);
for(E;E;E) S
if(E) S
if(E) S else S
{L}

L — LS

| €

Ova gramatika je viSezna&na. Problem je u if naredbi koja moZe, ali ne mora da ima else granu. Tako, na
primer, naredba if (E)if (E)E; else E; moZe da ima dva moguca stabla izvodenja:

S S
. P
/ /IN\ // /7 1T \N\ \
if (E) S if (E) S else S
_____ P P /\
/ /77 1NN\ //IN\ E
if (E) S else S if (E) S
/\ /\ /\

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
L Kontekstno-slobodni Jjezici

LJednoznaéne i viSezna&ne gramatike

Jednoznadne i vieznaéne gramatike

Primer

Stablima izvodenja sa prethodnog slajda odgovaraju sledeca stabla
apstraktne sintakse:

if if

/ \ /1 \C

E if /1 N\
/1 _ E if E
/1 N\ / \

E E E E E

Otuda semantika ove naredbe nije jednozna&no odredena

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
L Kontekstno-slobodni Jjezici

LJednoznaéne i viSezna&ne gramatike

Jednoznadne i vieznaéne gramatike

Ovaj problem se obi¢no reSava na sledeéi na&in:

S — U
| N
U — E
| while(E) U
| do S while(E);
| for(E;E;E) U
| {0
| if(E) U else U
L — LS
| e
N — if(E) Uelse N
| while(E) N
| for(E;E;E) N
| if(E)S

Intuitivno, naredba je ili uparena naredba (U) ili neuparena naredba (N). Uparene naredbe su sve ne-if
naredbe, kao i uparena if naredba (koja ima else granu koja sadrZi uparenu naredbu). Neuparene
naredbe nastaju upotrebom if naredbe bez else grane. Sada je uslov da naredba u okviru direktne grane
if naredbe mora biti uparena, ako postoji i else grana.

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
L Kontekstno-slobodni Jjezici

LJednoznaéne i viSezna&ne gramatike

Jednoznadne i vieznaéne gramatike

Primer

Sada naredba if (E)if (E)E; else E; ima samo jedno stablo izvodenja:

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike

L Kontekstno-slobodni Jjezici

LJednoznaéne i viSezna&ne gramatike

Jednoznadne i vieznaéne gramatike

Sledeci primer prikazuje pojednostavljeni fragment gramatike jezika C koji opisuje deklaracije:

D
L

T

S I O B S

T L;
LK
K
int
double
*K
P
Plc]
A
(K)
id

gde je c token koji oznacava celobrojnu konstantu, a id token koji oznacava identifikator. Sada se deklaracija
int * a[3], (* * b[3])[2]; moZe izvesti na sledeci nacin:
D= T L= int L;= int L,K;= int K, K;=> int xK,K;=> int * P,K;= int * P[c], K;=
int % Alc], K; = int *id[c], K;= int *id[c], P;= int *id[c], P[c]; = int xid[c], Alc]; =

int xid[c], (K)[c]; = int *id[c], (xK)[c]; = int *id[c], (x * K)[c]; = int «id[c], (* * P)[c]; =

int «id[c], (* % P[c])[c]; = int s id[c], (x * Alc])[c]; = int = id[c], (* id[c])[c]; (lekseme a, b, 2 i3 su

apstrahovane odgovarajucim tokenima).

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
L Kontekstno-slobodni Jjezici

LJednoznaéne i viSezna&ne gramatike

Jednoznadne i vieznaéne gramatike

Napomena

lako viezna&ne gramatike imaju oligledne nedostatke imaju i jednu prednost: obi¢no su
znatno jednostavnije

Primer

Visezna¢na gramatika aritmetickih izraza bi mogla da izgleda ovako:

E — E+E
| E—E
| ExE
| E/E
| (E)
|

a

Napomena

Kasnije u toku semestra ¢emo videti da pojedini alati mogu da prihvataju i ovakve
gramatike, pod uslovom da se prioriteti i asocijativnost eksplicitno definisu.

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike

L Kontekstno-slobodni Jjezici

LJednoznaéne i viSezna&ne gramatike

Jednoznadne i vieznaéne gramatike

Domaéi zadatak

Prouciti gramatiku jezika C koja se nalazi u dodatku knjige
.,Programski jezik C" Brajana Kernigena i Denisa Ricija.

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
L Kontekstno-slobodni Jjezici

LTransformar:ije gramatika

Transformacije gramatika

Zasto transformisati gramatiku?

m Videli smo da gramatika koja generise dati kontekstno
slobodni jezik nije jednoznaéna
m Cesto je moguce gramatiku transformisati u ekvivalentnu
gramatiku koja ima formu koja je za nas u nekom smislu
pogodnija
m Neke forme gramatike su pogodne u teorijskom smislu, jer se
na njima mogu lakSe dokazati neka svojstva
m Druge su korisne u praksi, jer se na njih mogu primeniti neke
efikasne metode prepoznavanja jezika

m Zbog toga u nastavku prou¢avamo neke najéesée
transformacije gramatika koje se u literaturi javljaju

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike

L Kontekstno-slobodni Jjezici

LTransformacije gramatika

Eliminacija nekorisnih simbola

Definicija 13
Nezavrsni simbol gramatike A je nekorisan, ako ne postoji ni jedno

izvodenje oblika: S =* a A =" w, gde je w € *.
Gramatika je Cista ako ne sadrZi nekorisne simbole.

Dakle, simbol je nekorisan ako ne ulestvuje ni u jednom izvodenju
neke redi jezika.

Neproduktivni i nedostiZni simboli

Simbol A je nekorisan ako je ili neproduktivan ili nedostizan:
m Simbol A je produktivan ako A =—"* w (w € L*). Simbol je
neproduktivan ako nije produktivan.
m Simbol A je dostizan ako S =* aAB. Simbol je nedostiZan
ako nije dostizan.

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
L Kontekstno-slobodni Jjezici

LTransformar:ije gramatika

Eliminacija nekorisnih simbola

Eliminacija neproduktivnih simbola

m Najpre odredujemo skup produktivnih simbola
m Ako postoji pravilo A — w, gde je w € ¥*, tada se A dodaje
u skup produktivnih simbola
m Ako postoji pravilo A — X1 X5 ... X, tako da je svako X; ili
terminal ili je ve¢ u skupu produktivnih, tada se A dodaje u
skup produktivnih simbola
m Postupak se ponavlja do dostizanja fiksne tacke
m Kada odredimo skup produktivnih simbola, one koji nisu u
tom skupu eliminisemo kao neproduktivne

m EliminiSu se sva pravila koja sadrze neproduktivne simbole, bilo
sa leve, bilo sa desne strane

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike

L Kontekstno-slobodni Jjezici

LTransformacije gramatika

Eliminacija nekorisnih simbola

Primer

Posmatrajmo gramatiku:
S

D
E

| A

AB
CA

a
ABD
EA
aB

b

aC
BA

U skup produktivnih simbola prvo dodajemo A (zbog pravila A — a), kao i C (zbog
pravila C —s b). Nakon toga dodajemo i simbol S (zbog pravila S —s CA), kao i D
(zbog pravila D — aC). Dalje prosirivanje skupa produktivnih simbola nije moguce.
Otuda su simboli E i B neproduktivni. Njihovom eliminacijom dobijamo gramatiku:

LETL

CA
a
b
aC

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike

L Kontekstno-slobodni Jjezici

LTransformacije gramatika

Eliminacija nekorisnih simbola

Eliminacija nedostiznih simbola

m Najpre formiramo skup dostiznih simbola:
m Simbol S dodajemo u skup dostiznih simbola
m Ako je simbol A u skupu dostiznih simbola i postoji pravilo
A — aBg, tada se B dodaje u skup dostiznih simbola
m Postupak se ponavlja do dostizanja fiksne tacke
m Kada odredimo skup dostiZnih simbola, one koji nisu u tom
skupu eliminisemo kao nedostizne
m EliminiSemo sva pravila koja sadrze nedostiZzne simbole, bilo sa
leve, bilo sa desne strane

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
L Kontekstno-slobodni Jjezici

LTransformacije gramatika

Eliminacija nekorisnih simbola

Vratimo se na gramatiku dobijenu eliminacijom neproduktivnih simbola u
prethodnom primeru:

CA

a

b

aC

Simbol S je dostiZzan. Otuda su dostizni i simboli C i A. Dalje proSirivanje
skupa dostiZnih simbola nije moguce, pa je simbol D nedostiZan. Njegovom
eliminacijom dobijamo gramatiku:

[

S — CA
A — a
C — b

Ova gramatika je &ista (ne sadrZi ni neproduktivne ni nedostizne simbole).

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike

L Kontekstno-slobodni Jjezici

LTransformacije gramatika

Eliminacija nekorisnih simbola

Napomena

m Postavlja se pitanje da li prvo uklanjati neproduktivne ili
nedostiZne simbole?
m Eliminacijom neproduktivnih simbola mogu nastati novi
nedostizni simboli
m Eliminacijom nedostiznih simbola se ne kreiraju novi
neproduktivni

m Odavde sledi da je prvo potrebno ukloniti neproduktivne, pa
zatim nedostizne (i stare i novonastale).

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
L Kontekstno-slobodni Jjezici

LTransformacije gramatika

Eliminacija nekorisnih simbola

Vratimo se ponovo na gramatiku:

S — AB
| CA
A — a
B — ABD
| EA
cC — aB
| b
D — aC
E — BA

Da smo prvo eliminisali nedostiZzne simbole, ne bismo eliminisali nista, jer su u ovoj
gramatici svi simboli dostiZni. Nakon toga bismo, kao i ranije, eliminacijom
neproduktivnih simbola dobili gramatiku:

S — CA
A — a
C — b
D — aC

koja nije &ista, jer u njoj postoji nedostizni simbol D (koji nije bio nedostiZan u po&etnoj
gramatici, ve¢ je to postao eliminacijom neproduktivnih simbola).

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike

L Kontekstno-slobodni Jjezici

LTransformacije gramatika

Eliminacija e-pravila

slobodne gramatike

m e-pravila su veoma esta u gramatikama
m Ipak, u nekim sluéajevima nije pogodno da postoje ovakva pravila
m Postojanje e-pravila u gramatici omogucava skracivanje receni¢nih
formi tokom izvodenja
m Ovo svojstvo ponekad moZe da smeta, kako u teorijskim, tako i u
prakti¢nim razmatranjima
m Ipak, za metode parsiranja koja ¢emo mi izuéavati, e-pravila obi¢no
nee predstavljati problem

Da li je moguce u potpunosti se osloboditi e-pravila?

Na Zalost, e-pravila nije moguce eliminisati u potpunosti. Naime, jasno je
da gramatika bez e-pravila ne moZe generisati praznu re¢ (a ona moze
pripadati kontekstno slobodnim jezicima).

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
L Kontekstno-slobodni Jjezici

LTransformacije gramatika

Eliminacija e-pravila

Definicija 14

Za gramatiku kaZemo da je e-slobodna ako:

m ne sadrZi ni jedno e-pravilo, ili

m sadrZi samo jedno e-pravilo S — ¢, pri emu je S pocetni simbol
gramatike i on se ne pojavljuje na desnoj strani ni jednog od pravila
gramatike.

Napomena

Ovom ,,relaksiranom” definicijom smo ostavili moguénost da generisemo
praznu re¥ € izvodenjem S = ¢, dok u svim ostalim izvodenjima
garantovano nema primene e-pravila, tj. nema skradivanja receni¢nih formi
tokom izvodenja.

Teorema 2

Za svaku konteksno slobodnu gramatiku G postoji ekvivalentna
kontekstno slobodna gramatika G’ koja je e-slobodna.

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike

L Kontekstno-slobodni Jjezici

LTransformacije gramatika

Eliminacija e-pravila

Napomena

Dokaz prethodne teoreme dacemo tako $to ¢emo konstruisati algoritam koji
transformige proizvoljnu gramatiku G u njoj ekvivalentnu e-slobodnu gramatiku G’.

Definicija 15

Za neterminal A kaZemo da je anulirajuc¢i ako A =>* €. Skup svih anulirajucih
simbola gramatike G oznacavamo sa N.(G) (ili samo N, ako je jasno o kojoj
gramatici je rec).

Algoritam eliminacije e-pravila

m Formiramo skup svih anulirajucih simbola gramatike N

m Svako pravilo gramatike A — « zamenimo skupom pravila koja nastaju tako
§to na sve moguce nacine eliminiemo anuliraju¢e simbole iz niske «

m e-pravila eliminisemo iz skupa pravila

m Ako je S € N, tada se u gramatiku dodaje novi po&etni simbol S’, kao i pravila
S —S|e

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike

L Kontekstno-slobodni Jjezici

LTransformacije gramatika

Eliminacija e-pravila

Algoritam odredivanja skupa anulirajucih simbola

m Iniicijalno, N, = @

m Ako u gramatici G postoji pravilo A — ¢, tada simbol A
dodajemo u skup N

m Ako u gramatici G postoji pravilo A — «, pri éemu svi
simboli iz « pripadaju skupu N;, tada se i simbola A dodaje u
skup N

m Postupak se nastavlja do dostizanja fiksne tacke

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
L Kontekstno-slobodni Jjezici

LTransformacije gramatika

Eliminacija e-pravila

Primer

Neka je data gramatika:
S — aSb
| e

Ova gramatika nije e-slobodna: jeste da ima samo jedno e-pravilo S — ¢, gde je S
pocetni simbol, ali se ovaj simbol nalazi i na desnoj strani nekog od pravila gramatike, sto
nije dozvoljeno po definiciji.

Da bismo transformisali ovu gramatiku, odredimo najpre skup anuliraju¢ih simbola N.
Kod nas je to skup N. = {S}. Sada se pravilo S — aSb zamenjuje skupom pravila

S —» aSb,S — ab, dok se e-pravilo izbacuje. Kako je S € N., dodajemo novi po&etni
simbol S’, &me dobijamo gramatiku:

S — S
| e

S — aSb
| ab

Ova gramatika je e-slobodna i ekvivalentna je polaznoj.

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
L Kontekstno-slobodni Jjezici

LTransformacije gramatika

Eliminacija e-pravila

Neka je data gramatika:

S — ABC
A — CAC
| C
C — aC
| e
B — bC

U skup anulirajucih simbola najpre dodajemo C (zbog pravila C — ¢€), a zatim A
(zbog pravila A— C). Otuda je N: = {A, C}. Sada se npr. pravilo S —» ABC
moZe zameniti skupom pravila S — ABC | BC | AB | B (ili ne eliminiSemo ni3ta,
ili samo A, ili samo C, ili oba). Sli¢no postupimo i sa ostalim pravilima, dok
e-pravila izbrisemo. Konac&ni rezultat je sledeca gramatika:

s — ac A ‘j‘C‘C
BC c — aC B — bC
| | cc
| AB | a | b
5 | cA
|

C

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike

L Kontekstno-slobodni Jjezici

LTransformacije gramatika

Eliminacija jednostrukih pravila

Definicija 16
Pravilo gramatike je jednostruko pravilo ako je oblika A— B, gde su A i B
neterminali.

Zbog Cega Zelimo da elimini¥emo ovakva pravila?

m Postojanje jednostrukih pravila moZe produZzavati izvodenja (npr.
aAf = aBf = aCB = ...)
m Ovo utie samo na efikasnost i nije toliko kriti¢no
m Ukoliko postoje ciklusi jednostrukih pravila
(npr. A— B,B — C,C — A), ovo moZe dovesti do beskona&nih
petlji tokom izvodenja
(aAB = aBf = aCf = aAB = aBf = ...)
m POSLEDICA: Gramatika koja sadrzi ovakve cikluse je viseznatna!!
m Otuda je eliminacija jednostrukih pravila neophodna jedino ako postoje
ciklusi

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
L Kontekstno-slobodni Jjezici

LTransformacije gramatika

Eliminacija jednostrukih pravila

Algoritam eliminacije jednostrukih pravila

Pretpostavimo da je data gramatika e-slobodna (ako nije, transformiemo je
najpre u ekvivalentnu e-slobodnu gramatiku).
m Za svaki neterminal A odredimo skup Js ={B e N | A=—"* B}
m Ovaj skup moZemo odrediti obilaskom grafa u kome su &vorovi neterminali,
a grane su jednostruka pravila
m Skup svih &vorova dostiznih iz A &ine skup Ja
m Primetimo da je uvek A € Jy
m Sada za svaki neterminal A, skup njegovih pravila zamenjujemo skupom
pravila koji nastaje tako §to za svako B € J4 uzmemo desne strane svih
ne-jednostukih pravila simbola B iz originalne gramatike

Teorema 3

Gramatika dobijena opisanim algoritmom ne sadrZi jednostruka pravila i
ekvivalentna je sa polaznom.

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike

L Kontekstno-slobodni Jjezici

LTransformacije gramatika

Eliminacija jednostrukih pravila

Neka je data gramatika iz prethodnog primera:

S — ABC A_’|

| BC
| AB
| B

CAC

AC C — aC B — bC
cC | | b
CA a

C

Sada imamo Js = {S, B}, Ja = {A, C}, Jg = {B}, Jc = {C}. Skup pravila za
simbol S dobijamo tako $to objedinimo sva ne-jednostruka S-pravila i sva
ne-jednostruka B-pravila. Sli¢no uradimo i za sve ostale simbole. Dobijamo

gramatiku:

s — ABc A
| BC |
| AB |
| bC |
| b |

CAC

AC

cc C — aC B — bC
CA | a | b
aC

a

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
L Kontekstno-slobodni Jjezici

LTransformacije gramatika

Eliminacija jednostrukih pravila

Primer

Posmatrajmo gramatiku izraza:

E — E+T
| T

T — TxF
| F

F — (E)
| a

U ovoj gramatici imamo: Jg = {F}, Jt ={T,F}, Je ={E, T,F}. Sada
eliminacijom jednostrukih pravila dobijamo gramatiku:

E — E+T
| TxF
| (E)
| a

T — TxF
| (E)
(E]

F —
|

m,\
m
)

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike

L Kontekstno-slobodni Jjezici

LTransformancije gramatika

Eliminacija jednostrukih pravila

Napomene

m Eliminacijom jednostrukih pravila skracuju se izvodenja, ali
zato gramatika postaje znatno sloZenija

m U praksi se ne primenjuje, osim u slu¢aju da postoje ciklusi

Definicija 17

Gramatika je svojstvena ako je e-slobodna i ne sadrZi cikluse
(tj. izvodenja oblika A=—=* A).

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
L Kontekstno-slobodni Jjezici

LTransformacije gramatika

Eliminacija leve rekurzije

Levo rekurzivno pravilo je pravilo oblika A — A« (gde je
a € (ZUN)T).

Zbog Cega je eliminiSemo ovakva pravila?

m Za neke metode parsiranja koje ¢emo raditi, leva rekurzija nije
dozvoljena

m Sa druge strane, kao $to znamo, rekurziju nije moguce u
potpunosti eliminisati

m Ono 5to moZemo je da, u slu¢aju potrebe, levu rekurziju
zamenimo desnom

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
L Kontekstno-slobodni Jjezici

LTransformacije gramatika

Eliminacija leve rekurzije

Algoritam eliminacije leve rekurzije

Neka su data pravila za simbola A:

A — Ao | Aaz | ... | Aa,

| BilB2| - | Bm

pri ¢emu su u prvom redu navedena levo-rekurzivna pravila, a u drugom redu
pravila koja nisu levo-rekurzivna. Ovaj skup pravila zamenjujemo skupom
pravila:

A — BA | BA | ... | BmA

A — A aA | | asA e

gde je A’ novouvedeni neterminal.

Primedba

Ovim postupkom se uvodi e-pravilo, pa gramatika vide nije e-slobodna (ako je
prethodno bila).

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
L Kontekstno-slobodni Jjezici

LTransformacije gramatika

Eliminacija leve rekurzije

Varijanta algoritma bez uvodenja e-pravila

Pravila za simbol A:

A — Aai | Aag | ... | Aa,

| Bl B2l - | Bm

zamenjujemo skupom pravila:

A — KA BA | ... | BnA
| Bl B2l ... | Bm
A — A aA | | A

| aa|az]| ... |an

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
L Kontekstno-slobodni Jjezici

LTransformacije gramatika

Eliminacija leve rekurzije

Primer

Neka je data gramatika izraza:

E — E+T
| T
T — TxF
F
F — (E)
| a

Ovde je leva rekurzija prisutna kod simbola E i T. Eliminacijom leve rekurzije
dobijamo gramatiku:

E — TE
E — +TE|e
T — FT'
T — +FT'|e
F — (E)

| a

gde su E' i T' novouvedeni neterminali.

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
L Kontekstno-slobodni Jjezici

LTransformacije gramatika

Eliminacija leve rekurzije

(nastavak) U slucaju da smo Zeleli da izbegnemo e-pravila, dobili
bismo gramatiku:

E — TE'|T
El — +TE'| +T
T — FT'|F
T — «FT'| xF
F — (E)

| a

Ovo je isto kao da smo na prethodni rezultat primenili algoritam
eliminacije e-pravila.

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike

L Kontekstno-slobodni Jjezici

LTransformacije gramatika

Eliminacija leve rekurzije

A Sta ako imamo posrednu levu rekurziju?

Posredna leva rekurzija postoji u gramatici ako postoji izvodenje oblika
A="T Aa, gde « € (ZUN)*.

Da li ovo smeta?

Posredna leva rekurzija je jednako nepovoljna po neke metode parsiranja kao i
neposredna. Zbog toga je i nju neophodno eliminisati pre primene takvih
metoda.

Kako je prepoznati?

Pretpostavimo da je gramatika e-slobodna:
m Formiramo graf u kome su &vorovi neterminali, a grana od A do B postoji
akko postoji pravilo oblika A — Ba (o € (X U N)*)
m Ako u tom grafu postoje ciklusi (petlje) tada u gramatici postoji posredna
(neposredna) leva rekurzija

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
L Kontekstno-slobodni Jjezici

LTransformar:ije gramatika

Eliminacija leve rekurzije

Algoritam eliminacije posredne leve rekurzije

m Poredamo sve neterminale u niz A1, A, ..., Ay:
m Trudimo se da, kad god je to moguce, poredak bude takav da simbol X
bude ispred Y kad god postoji pravilo X — Yau.
m Formiramo grane od simbola A; do simbola A; gde god postoji pravilo
oblika A; — Aja
m ako nema petlji ni ,,povratnih” grana (tj. grana koje idu od A; do A;, gde je
i > j), tada u gramatici nema leve rekurzije (ni posredne ni neposredne)
m Povratne grane i petlje eliminisemo sa leva u desno:

m za svaki simbol A; (za i =1,2,...,n, tim redom) ispitujemo da li postoji
povratna grana od A; do A;, tj. pravilo oblika A; — Ajar (za j =1,2,...,1,
tim redom).

m Ako postoji pravilo A; —+ Aja, gde je i > j, tada se ovo pravilo zamenjuje
skupom pravila oblika A; — aj’fa, gde su A; — aj’-‘ pravila za simbol A; u
datoj gramatici

m Ako postoji pravilo A; — A;«, tada se ovo pravilo uklanja eliminacijom
neposredne leve rekurzije

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
L Kontekstno-slobodni Jjezici

LTransformacije gramatika

Eliminacija leve rekurzije

Neka je data gramatika:

X — Yb|azZ
Y — Yal2b
Z — Wa|Xb|Yc|c
W — aW|b

[

Pretpostavimo da smo odabrali poredak X,Y,Z,W. Sada imamo sledece grane u grafu:

X—>Y—>7Z—>W

Najpre se oslobadamo petlje na Y (neposredna leva rekurzija), gde se Y-pravila zamenjuju slede¢im pravilima:

Y — by’
Y — aY'|e

Zatim se oslobadamo povratne grane od Z do X, tako $to Z-pravila juj sledecim pravilil

Z — Wa|Ybb|aZb| Yc|c

Zatim se oslobadamo grane od Z do Y tako $to Z-pravila juje sledeéim pravilil

Z — Wa| ZbY'bb | aZb | ZbY'c| c
Sada nam se pojavila petlja na Z koje se oslobadamo eliminacijom neposredne leve rekurzije:

Z — WaZ'|azbZ' | cZ'
7 — bY'bbZ' | bY'cZ | =

Sada vise nema povratnih grana ni petlji u gornjem grafu, te je dobijena gramatika bez leve rekurzije.

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike

L Kontekstno-slobodni Jjezici

LTransformar:ije gramatika

Eliminacija leve rekurzije

m U prethodnom postupku se moglo dogoditi da se eliminacijom
jedne povratne grane dobije nova povratna grana (ili petlja)

m Zbog toga je bitno da se grane uklanjaju sa leva na desno,
kako bi se novostvorene grane ,,pokupile” u daljem postupku

m Simboli koji se uvode prilikom eliminacije neposredne leve
rekurzije nikada nisu na pocetku desne strane nekog pravila
(pod pretpostavkom da je polazna gramatika bila e-slobodna)

m Otuda se oni uvek mogu staviti na poetak niza (nece biti
uvedene nove povratne grane)

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike

L Kontekstno-slobodni Jjezici

LTransformacije gramatika

Eliminacija leve faktorisanosti

Definicija 18
Gramatika je levo faktorisana ako postoje pravila oblika
A—am|ay]| ... |aw gdejeac (ZUN)T, a

Yo7k € (ZUN)

Napomena

Gramatika je, dakle, levo faktorisana, ako postoje dva ili vise pravila sa
istom levom stranom &ije desne strane imaju zajednic¢ki neprazan
prefiks (levi faktor).

Zbog &ega nam to smeta?

Kao i kod leve rekurzije, postojanje leve faktorisanosti onemogucava
primenu nekih metoda parsiranja, pa ju je u tim slu¢ajevima potrebno
ukloniti.

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
L Kontekstno-slobodni Jjezici

LTransformancije gramatika

Eliminacija leve faktorisanosti

Algoritam uklanjanja leve faktorisanosti

Pravila A — av1 | ay2 | ... | @yk zamenjujemo pravilima:
A — oA
A — ylvl %

pri éemu pretpostavljamo da je a najduZi mogudi zajednicki prefiks
za navedena pravila.

Prevodjenje programskih jezika — beledke sa predavanja Jezici i gramatike
L Kontekstno-slobodni Jjezici

LTransformacije gramatika

Eliminacija leve faktorisanosti

Neka je data gramatika:

S — aBS|acB|aBB|a
B — aBc|acB|b

Gramatika je levo faktorisana i za S-pravila i za B-pravila. U slu¢aju B pravila situacija je
jednostavna — prva dva pravila imaju zajedni¢ki prefiks a, pa uvodimo novi simbol B’ i
pravila:

B — aB'|b

B — Bc|cB
pri &emu pravilo B — b ostaje, jer ono nije bilo predmet eliminacije leve faktorisanosti.

U slu¢aju S pravila, situacija je sloZenija. Najpre imamo zajednicki prefiks a za sva Cetiri
pravila. Eliminacijom ovog zajedni¢kog prefiksa dobijamo pravila:

S — as
S — BS|cB|BB|e

Sada prvo i tre¢e S’ pravilo imaju zajedni¢ki prefiks B, pa se na njih dalje primenjuje isti
postupak (dok drugo i Eetvrto pravilo ostaju):

S — as
S — BS"|cB|e
s — S|B

	Azbuke, reči i jezici
	Azbuka i reč

	Regularni jezici i regularni izrazi
	Regularni jezici
	Regularni izrazi
	Prošireni regularni izrazi
	Regularni izrazi u leksičkoj analizi
	Ograničenja regularnih jezika

	Kontekstno-slobodni jezici
	Gramatike i jezici
	Stablo izvođenja
	Jednoznačne i višeznačne gramatike
	Transformacije gramatika

