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4 Osobine prepoznatljivih jezika

5 Konstrukcija automata po regularnom izrazu

6 Minimizacija konačnih automata
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Uvod u automate

Definicija 1

Automati su formalni modeli izračunavanja koji omogućavaju prepoznavanje jezika,
tj. ispitivanje da li data reč pripada nekom fiksiranom jeziku.

Šta ovo znači?

Za svaki fiksirani jezik konstruǐse se poseban automat koji prepoznaje samo taj jezik
Automat na ulazu prihvata reč, a na izlazu daje odgovor: da (pripada) ili ne (ne
pripada jeziku automata)

Otuda je automat model procedure odlučivanja za problem pripadanja jeziku

Automati su bliski Tjuringovim mašinama, ali im je moć prepoznavanja manja:

Tjuringova mašina predstavlja model proizvoljnog algoritma i pomoću nje se može
opisati proizvoljna procedura (polu)odlučivanja
Automati predstavljaju model uže klase algoritama za prepoznavanje jezika koji
pripadaju odredenim klasama (poput regularnih jezika, kontekstno slobodnih jezika, i
td.)

Sa druge strane, automati su jednostavniji od Tjuringovih mašina

Složenost izračunavanja automata je, u slučaju determinističkih automata, linearna u
odnosu na dužinu reči na ulazu
Jednom definisani automat se relativno lako može implementirati u većini programskih
jezika
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Vrste automata

Neke značajne klase automata:

Konačni automati (engl. finite state automata) – prepoznaju regularne
jezike
Potisni automati (engl. push-down automata) – prepoznaju kontekstno
slobodne jezike
Linearno ograničeni automati (engl. linear bounded automata) –
prepoznaju kontekstno zavisne jezike

U kontekstno zavisnim gramatikama leve strane pravila mogu biti proizvoljne
niske iz (Σ ∪ N)∗, uz uslov da desna strana pravila ne bude kraća od leve
Na primer, možemo imati pravilo aSb −→ acb, što znači da se simbol S
može zameniti sa c samo kada se nalazi u datom ,,kontekstu” (izmedu a i b)
Sa druge strane, kontekstno slobodno pravilo S −→ c omogućava zamenu S
sa c uvek, bez obzira na kontekst
Klasa kontekstno zavisnih jezika sadrži u sebi sve kontekstno slobodne jezike
koji ne sadrže praznu reč

Potisni automati sa dva steka – ekvivalentni su sa Tjuringovim mašinama
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7 Konstrukcija regularnog izraza za dati automat

8 Lema o razrastanju



Prevodenje programskih jezika – beleške sa predavanja Konačni automati
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Konačni automati

Primer

Konačni automat se može predstaviti u obliku grafa:

Čvorovi grafa predstavljaju stanja kojih ima konačno mnogo. Lukovi grafa predstavljaju prelaze. Prelazi
su označeni simbolima azbuke Σ (u našem primeru Σ = {a, b}). Stanja u koja ulazi strelica koja ne
izlazi ni iz jednog stanja se nazivaju početna stanja (stanje 0 kod nas). Stanja koja su označena
dvostrukim kružićem se nazivaju zavřsna stanja (opet stanje 0 kod nas). Kao što se vidi, stanje može
istovremeno biti i početno i zavřsno.
Automat polazi iz nekog početnog stanja i čita slovo po slovo reči w ∈ Σ∗ sa ulaza. Za svako pročitano
slovo, automat koristi neki od lukova koji je označen tim slovom da prede iz tekućeg stanja u neko
sledeće stanje. Reč je prepoznata automatom ako se nakon čitanja svih slova reči automat nalazi u
zavřsnom stanju.
Automat iz ovog primera prepoznaje sve reči koje imaju paran broj slova a u sebi.
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Konačni automati

Primer

Konačni automat sa sledeće slike:

prepoznaje sve reči nad azbukom Σ = {a, b} koje se zavřsavaju sa
ab. Ono što primećujemo na ovom primeru je da kada se nalazimo
u stanju 0, a na ulazu se nalazi slovo a, tada imamo dve
mogućnosti: ili da ostanemo u stanju 0 ili da predemo u stanje 1.
Ovo naš automat čini nedeterminističkim.
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Primer

Konačni automat sa sledeće slike:

prepoznaje jezik svih reči nad azbukom Σ = {a, b} koje sadrže bar
jedno slovo a i bar jedno slovo b. Ovaj automat je deterministički i
potpun: za svako stanje i svako slovo azbuke postoji tačno jedan luk
koji izlazi iz tog stanja i obeležen je tim slovom.
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Konačni automati

Definicija 2

Konačni automat je uredena petorka A = (Σ,Q, I ,F ,∆), gde je:

Σ – konačna azbuka automata
Q – konačni skup stanja
I ⊆ Q – skup početnih stanja
F ⊆ Q – skup zavřsnih stanja
∆ ⊆ Q × (Σ ∪ {ε})× Q – skup prelaza

Prelaz (q, a, r) ∈ ∆ ćemo obično zapisivati kao q
a−→ r . Izračunavanje c u automatu A je

niz prelaza c : q0
a1−→ q1

a2−→ q2
a3−→ . . .

an−→ qn. Pritom, reč w = a1a2 . . . an nazivamo
etiketom izračunavanja c (u oznaci w = |c|). Izračunavanje c ćemo kraće zapisivati sa

c : q0
w
=⇒ qn. Izračunavanje c je uspešno ako kreće iz početnog stanja i zavřsava u

zavřsnom stanju. Jezik automata A (u oznaci L(A)) je skup etiketa svih uspešnih
izračunavanja u automatu:

L(A) = {w ∈ Σ∗ | ∃c : q0
w
=⇒ qn, q0 ∈ I , qn ∈ F}

Za jezik kažemo da je prepoznatljiv ako postoji konačni automat koji ga prepoznaje. Skup
svih prepoznatljivih jezika nad Σ označavamo sa P(Σ).
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Primedba

Primetimo da je u definiciji automata skup prelaza ∆ podskup od
Q × (Σ ∪ {ε})×Q: ovo znači da etiketa prelaza može biti i prazna
reč ε. Takve prelaze nazivamo ε-prelazi.
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Definicija 3

Automat je potpun ako za svako stanje q ∈ Q i svaki simbol a ∈ Σ
postoji prelaz (q, a, r) ∈ ∆, za bar jedno r ∈ Q.

Upotpunjavanje konačnog automata

Svaki nepotpuni automat se može upotpuniti dodavanjem stanja
greške Err :

stanje greške je nezavřsno

svi prelazi koji nedostaju se usmeravaju ka stanju greške

iz stanja greške se za sve simbole iz Σ prelazi u to isto stanje
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Potpuni deterministički konačni automati
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Primer

Automat sa sledeće slike:

prepoznaje jezik svih identifikatora u C-u. Ipak, ovaj automat je
nepotpun – ako naide simbol koji se ne očekuje na tom mestu u
identifikatoru, automat neće moći da napravi prelaz (kažemo i da
automat zaglavljuje).
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Potpuni deterministički konačni automati

Primer

Automat na sledećoj slici (nad azbukom ASCII karaktera) dobija se
upotpunjavanjem automata iz prethodnog primera:

Ovaj (potpuni) automat takode prepoznaje jezik svih identifikatora
u jeziku C.
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Primedba

U prethodnom primeru, stanje Err je predstavljalo stanje greške. Ovo stanje je
nezavřsno i ulaskom u to stanje ostajemo u njemu zauvek. U to stanje se ulazi
u slučaju nedozvoljenog prefiksa, tj. prefiksa ulaza koji ne predstavlja prefiks ni
jedne reči jezika koji prepoznajemo.

Ne moraju svi automati imati stanje greške
Stanje greške postoji u slučaju da za jezik koji prepoznajemo postoji neki
nedozvoljeni prefiks

Na primer, kod identifikatora, čim naide neki karakter koji se ne može
pojaviti u identifikatoru ulazimo u stanje greške – naredni karakteri na ulazu
ne mogu ,,popraviti” štetu koja je nastala nailaskom tog karaktera

Postoje jezici kod kojih za svaki prefiks iz Σ∗ postoji reč jezika koja ima
taj prefiks:

Na primer, u jeziku koji sadrži paran broj slova a, uvek možemo dopisati još
jedno a da broj pojavljivanja tog slova učinimo parnim
Dakle, uvek ima nade da će simboli koji nailaze u nastavku ,,popraviti”
trenutno stanje
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Potpuni deterministički konačni automati

Napomene

Potpunost automata je veoma bitno svojstvo, jer mnoga
teorijska razmatranja o automatima pretpostavljaju potpunost

U praksi, stanje greške je uglavnom implicitno – kada nemamo
prelaz, prekidamo dalje čitanje ulaza i prijavljujemo grešku
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Definicija 4

Konačni automat je deterministički ako su ispunjeni sledeći uslovi:

postoji tačno jedno početno stanje
nema ε-prelaza
za svako q ∈ Q i svako a ∈ Σ postoji najvǐse jedno stanje q′ ∈ Q
takvo da je (q, a, q′) ∈ ∆.

Napomena

Ako je automat deterministički i potpun, tada za svako q ∈ Q i svako
a ∈ Σ postoji tačno jedno stanje q′ ∈ Q takvo da je (q, a, q′) ∈ ∆.
Tada možemo definisati funkciju prelaska:

δ(q, a) = q′ ⇔ (q, a, q′) ∈ ∆
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Teorema 1

Ako je automat deterministički, tada za svaku reč w ∈ Σ∗ postoji
najvǐse jedno izračunavanje c : p

w
=⇒ q sa etiketom w, takvo da je

p ∈ I .

Teorema 2

Ako je automat potpun i deterministički tada za svaku reč w ∈ Σ∗

postoji tačno jedno izračunavanje c : p
w
=⇒ q sa etiketom w, takvo

da je p ∈ I .
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Potpuni deterministički konačni automati

Napomene

Deterministički automat omogućava prepoznavanje reči u
linearnom vremenu u odnosu na dužinu reči

Sa druge strane, izvřsavanje nedeterminističkih automata se
može simulirati vraćanjem unazad (engl. backtracking), što u
najgorem slučaju daje eksponencijalnu složenost

Otuda je poželjno da automat koji koristimo bude
deterministički
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Potpuni deterministički konačni automati

Primer

Setimo se automata koji prepoznaje reči koje se zavřsavaju sa ab:

Konstatovali smo da je ovaj automat nedeterministički. Ekvivalentan
deterministički automat je dat na sledećoj slici:
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Potpuni deterministički konačni automati

Da li uvek možemo popraviti nedeterminističnost?

U prethodnom primeru smo do ekvivalentnog determinističkog
automata došli ad-hoc pristupom

Da li postoji sistematski pristup determinizaciji konačnih
automata?

Da li za svaki nedeterministički konačni automat postoji njemu
ekvivalentan deterministički?
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Konstrukcija po podskupovima

Neka je dat nedeterministički konačni automat A = (Σ,Q, I ,F ,∆).
Njemu ekvivalentan potpun i deterministički konačni automat
A = (Σ,PQ, {I},F , δ) konstruǐsemo na sledeći način:

skup stanja automata A je PQ – skup svih podskupova od Q

skup početnih stanja je skup {I}
skup zavřsnih stanja je F = {R ⊆ Q | R ∩ F ̸= ∅}

dakle, zavřsno stanje je svaki podskup od Q koji sadrži bar
jedno zavřsno stanje automata A

funkcija prelaska automata A je definisana na sledeći način:

δ(R, a) = {q | ∃r ∈ R. r
a
=⇒ q}
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Primer

Posmatrajmo ponovo nedeterministički automat za jezik svih reči koje se zavřsavaju
sa ab:

Konstrukcijom po podskupovima dobija se sledeći automat:
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Nedostižna stanja

U determinističkom automatu iz prethodnog primera postoje stanja
koja su nedostižna iz početnog stanja
Za automat kažemo da je potkresan (engl. pruned) ako nema
nedostižnih stanja
Primenom konstrukcije po podskupovima često se dobijaju
nepotkresani automati
Zbog toga nakon konstrukcije po podskupovima moramo da izvřsimo
potkresivanje:

Obilaskom grafa automata polazeći iz početnog stanja označavamo sva
dostižna stanja
Stanja koja nisu označena kao dostižna se eliminǐsu iz automata
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Potpuni deterministički konačni automati

Primer

Posmatrajmo ponovo deterministički automat dobijen u prethodnom primeru:

Potkresivanjem ovog automata dobijamo automat:

Ovaj automat odgovara automatu koji smo dobili ranije ad-hoc pristupom.
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Može li bez potkresivanja?

Konstrukcijom po podskupovima (direktno po definiciji) dobijamo automat sa 2|Q| stanja
U mnogim slučajevima, nakon potkresivanja, dobija se automat sa znatno manje stanja
Otuda je mnogo zgodnije da se umesto potkresivanja odmah konstruǐsu samo podskupovi koji
odgovaraju dostižnim stanjima

Algoritam konstrukcije po podskupovima

Neka je red stanja S inicijalno prazan
Najpre formiramo početno stanje automata A (skup I svih početnih stanja polaznog automata
A = (Σ,Q, I ,F ,∆))
Početno stanje dodajemo u skup stanja automata A (kao jedino njegovo početno stanje), kao i u
red stanja S
Dokle god je red stanja S neprazan:

Skidamo naredno stanje R iz reda S
Za svaki simbol a ∈ Σ formiramo skup stanja Ra = {q′ ∈ Q | ∃q ∈ R. q

a
=⇒ q′}

Ako stanje Ra ne postoji već u automatu A, dodajemo ga u skup stanja, dodajemo prelaz (R, a,Ra) i
dodajemo Ra u red S
Ako stanje Ra već postoji u skupu stanja, tada samo dodajemo prelaz (R, a,Ra) u automat

Postupak se zavřsava kada red S postane prazan
Zavřsna stanja novog automata su sva stanja koja sadrže bar jedno zavřsno stanje polaznog
automata A
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Primer

Polazeći od nedeterminističkog automata:

možemo najpre konstruisati početno stanje (podskup koji se sastoji iz svih početnih stanja polaznog automata). U našem
primeru, to je skup {0}. Zatim konstruǐsemo skup koji sadrži sva stanja u koja se može stići preko simbola a iz nekog od
stanja u početnom stanju – u našem primeru to je skup {0, 1}. Slično, skup svih stanja u koje se može stići simbolom b iz
nekog od stanja u početnom stanju će biti skup {0} (to stanje već imamo). Sada za novodobijeno stanje {0, 1}
ponavljamo sličan postupak po svakom od simbola azbuke: za a dobijamo skup {0, 1}, dok za b dobijamo skup {0, 2}.
Ponavljanjem postupka za stanje {0, 2} dobijamo postojeća stanja {0, 1} (za a) i {0} (za b). Ovim se algoritam zavřsava i
dobija se rezultat:
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Konstrukcija po podskupovima i upotpunjavanje

Algoritam konstrukcije po podskupovima automatski vřsi i upotpunjavanje
automata, ukoliko on prethodno nije bio potpun
Ukoliko iz nekog stanja polaznog automata nema prelaza po nekom simbolu
azbuke, tada će algoritam konstrukcije po podskupovima proizvesti prazan skup
stanja polaznog automata

Prazan skup je podskup svakog skupa, pa je po definiciji jedno od mogućih stanja
automata koji konstruǐsemo
Iz praznog skupa će svi prelazi voditi ponovo u njega samog, jer nećemo imati
stanje u njemu iz koga bismo mogli da odemo u neko drugo stanje polaznog
automata
Prazan skup će biti nezavřsno stanje, jer ne sadrži ni jedno zavřsno stanje
polaznog automata
Otuda, prazno stanje igra ulogu stanja greške

Ovo stanje će se automatski kreirati ako je jezik takav da sadrži nedozvoljene
prefikse
VAŽNO: Ne kreirati ručno stanje greške u automatu pre determinizacije, jer će
ga algoritam determinizacije sam kreirati, ako je potrebno
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Šta sa ε-prelazima?

Iako po definiciji automati mogu imati i ε-prelaze, u dosadašnjim
primerima ih nismo imali
ε-prelazi se obično dobijaju u nekim standardnim konstruktivnim
postupcima koje ćemo kasnije učiti
Automati koji sadrže ε-prelaze su po definiciji nedeterministički
Pitanje je na koji način se konstrukcija po podskupovima može
primeniti na automate sa ε-prelazima?

Prvi način je da se najpre oslobodimo ε-prelaza, pa da onda primenimo
konstrukciju po podskupovima
Drugi način je da se eliminacija ε-prelaza integrǐse u postupak
konstrukcije po podskupovima

Ovaj drugi pristup je češći, ali ćemo ipak jednim primerom najpre
ilustrovati prvi pristup
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Algoritam eliminacije ε-prelaza

Za svako stanje q ∈ Q formiramo njegovo ε-zatvorenje
ε(q) = {q′ ∈ Q | q ε

=⇒ q′}
Novi automat će za skup stanja imati skup ε(Q) = {ε(q) | q ∈ Q}
(skup svih ε-zatvorenja)
Prelaz (ε(q), a, ε(r)) će u novom automatu postojati akko postoji
prelaz (q′, a, r) u starom automatu, za neko q′ ∈ ε(q)
Početna stanja novog automata su ε-zatvorenja početnih stanja
polaznog automata
Zavřsna stanja novog automata su sva ε-zatvorenja koja sadrže bar
jedno zavřsno stanje polaznog automata
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Primer

Posmatrajmo automat:

Imamo da je ε(0) = {0, 1, 2}, ε(1) = {1, 2}, ε(2) = {2}, ε(3) = {3}. Ova ε-zatvorenja biće stanja novog
automata. Formiranjem odgovarajućih prelaza, dobijamo:

Ovaj automat nema ε-prelaza, ali je nedeterministički.
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Potpuni deterministički konačni automati

Potpuni deterministički konačni automati

Primer

Zbog jednostavnosti notacije, preimenujmo stanja automata dobijenog u prethodnom primeru:

Njegovom determinizacijom (konstrukcijom po podskupovima), dobijamo:
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Potpuni deterministički konačni automati

Potpuni deterministički konačni automati

Determinizacija bez prethodnog uklanjanja ε-prelaza

Pažljivom analizom algoritma konstrukcije po podskupovima vidimo da njemu
ε-prelazi ne smetaju
Naime, setimo se kako smo konstruisali stanje Ra u koje prelazimo iz stanja R

po simbolu a: Ra = {q′ ∈ Q | ∃q ∈ R. q
a
=⇒ q′}

Ključno u ovoj formulaciji je da imamo izračunavanje q
a
=⇒ q′, a ne prelaz q

a−→ q′

Otuda, dozvoljena su i vǐsestruka ,,preskakanja” po ε-prelazima, kako pre, tako i
posle prelaza po simbolu a
U nekim knjigama, konstrukcija po podskupovima se definǐse restriktivnije
(koriste se prelazi umesto izračunavanja): u takvoj formulaciji se algoritam može
koristiti samo na automate bez ε-prelaza
Naša verzija algoritma je proširena tako da u sebi sadrži i algoritam eliminacije
ε-prelaza

Da bismo efikasno konstruisali automat A, potrebna su nam ε-zatvorenja:

Početno stanje automata A čini unija ε-zatvorenja svih početnih stanja polaznog
automata A
Svaki put kada u Ra dodamo neko stanje q′, dodajemo i sva stanja iz njegovog
ε-zatvorenja
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Potpuni deterministički konačni automati

Potpuni deterministički konačni automati

Primer

Krenimo ponovo od automata:

Setimo se i njegovih ε-zatvorenja: ε(0) = {0, 1, 2}, ε(1) = {1, 2}, ε(2) = {2}, ε(3) = {3}. Početno stanje čini
ε-zatvorenje početnog stanja 0 polaznog automata: to je skup {0, 1, 2}. Sada postupak konstrukcije po
podskupovima primenjujemo kao i ranije, s tim što uvek zajedno sa nekim stanjem u skup dodajemo i sva stanja
iz njegovog ε-zatvorenja. Na primer, iz stanja 3 se pomoću simbola a može stići u stanje 1, kao i u sva stanja iz
ε(1), a tu je još i stanje 2. Otuda će svaki prelaz po a iz stanja koje sadrži stanje 3 obavezno pored stanja 1
sadržati i stanje 2. Rezultat koji se dobija na kraju je:
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Potpuni deterministički konačni automati

Potpuni deterministički konačni automati

Teorema 3

Jezik L je prepoznatljiv akko postoji potpuni deterministički konačni
automat (PDKA) koji ga prepoznaje.

Dokaz

Teorema sledi iz gore opisanog postupka kojim se za svaki automat može
konstruisati njemu ekvivalentan PDKA.

Važna napomena

Ova teorema ima veoma značajne posledice na teoriju konačnih automata:
ona nam govori da su nam deterministički automati dovoljni i da
nedeterminizmom u slučaju konačnih automata nǐsta ne dobijamo, u smislu
izražajnosti. U praksi je ovo veoma pozitivan rezultat, jer deterministički
automati ne zahtevaju vraćanje unazad u implementaciji, te omogućavaju
prepoznavanje reči u linearnom vremenu (jednim prolaskom kroz reč).
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Osobine prepoznatljivih jezika

Pregled

1 Uvod u automate

2 Pojam konačnog automata

3 Potpuni deterministički konačni automati

4 Osobine prepoznatljivih jezika

5 Konstrukcija automata po regularnom izrazu

6 Minimizacija konačnih automata

7 Konstrukcija regularnog izraza za dati automat

8 Lema o razrastanju
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Osobine prepoznatljivih jezika

Teorema 4

Ako je jezik L prepoznatljiv, tada je i njegov komplement Σ∗ \ L prepoznatljiv.

Dokaz

Posmatrajmo PDKA (potpuni deterministički konačni automat) A koji prepoznaje jezik L
(ovakav automat uvek postoji). Posmatrajmo automat Ac koji je identičan kao i polazni,
s tim što su njegova zavřsna stanja postala nezavřsna i obratno. Setimo se da je u
svakom PDKA izračunavanje za svaku reč w ∈ Σ∗ jedinstveno i ono nas odvodi u
jednoznačno odredeno stanje q(w) ∈ Q. Kako automat Ac ima isto početno stanje i iste
prelaze kao i A, stanje q(w) biće isto u ovom automatu kao i u automatu A (za svaku
reč w). Medutim, kako smo ovde zamenili zavřsna i nezavřsna stanja, sledi da će automat
Ac prepoznavati one i samo one reči koje automat A ne prepoznaje.

Primedba

Primetimo da opisanu konstrukciju ne možemo primeniti na automate koji nisu potpuni i
deterministički, jer za njih ne važi ona primedba o jedinstvenosti izračunavanja
(tj. izračunavanje za neku reč w može da ne postoji, ili da postoji, a da ne bude
jedinstveno).
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Osobine prepoznatljivih jezika

Osobine prepoznatljivih jezika

Primer

Posmatrajmo automate:

Gornji automat je PDKA koji prepoznaje jezik svih binarnih reči koje sadrže dve
uzastopne nule. Donji automat prepoznaje komplementarni jezik – jezik svih reči
koje ne sadrže dve uzastopne nule.



Prevodenje programskih jezika – beleške sa predavanja Konačni automati

Osobine prepoznatljivih jezika

Osobine prepoznatljivih jezika

Primer

Posmatrajmo automate:

Gornji automat je nedeterministički automat koji prepoznaje jezik svih reči nad
azbukom {a, b} koje se zavřsavaju sa ab. Kako ovaj automat nije PDKA, opisana
transformacija nad njim ne daje ispravan rezultat – donji automat prepoznaje jezik
Σ∗, što nije komplement polaznog jezika.
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Osobine prepoznatljivih jezika

Teorema 5

Ako su jezici L1 i L2 prepoznatljivi, tada su i jezici L1 ∪ L2, L1 ∩ L2 i L1 \ L2 prepoznatljivi.

Dokaz

Neka su A1 = (Σ,Q1, i1,F1, δ1) i A2 = (Σ,Q2, i2,F2, δ2) PDKA koji prepoznaju jezike L1
i L2, respektivno. Formirajmo automat A = (Σ,Q1 × Q2, (i1, i2),F , δ), gde je
δ((q1, q2), a) = (δ1(q1, a), δ2(q2, a)). Skup zavřsnih stanja F zavisi od tražene skupovne
operacije:

Za uniju: F = {(q1, q2) | q1 ∈ F1 ∨ q2 ∈ F2}
Za presek: F = {(q1, q2) | q1 ∈ F1 ∧ q2 ∈ F2}
Za razliku: F = {(q1, q2) | q1 ∈ F1 ∧ q2 /∈ F2}

Lako se može proveriti da opisani automat prepoznaje odgovarajući jezik.

Napomena

Primetimo da se opisanim postupkom može dobiti nepotkresan automat, iako su polazni
automati bili potkresani. Otuda nakon ove konstrukcije može biti neophodno dodatno
potkresivanje.



Prevodenje programskih jezika – beleške sa predavanja Konačni automati
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Osobine prepoznatljivih jezika

Primer

Posmatrajmo automate na slici:

Gornji levi automat je PDKA koji prepoznaje jezik svih reči koje se zavřsavaju sa ab, dok
je gornji desni PDKA automat koji prepoznaje jezik svih reči koje sadrže paran broj slova
a. Automat koji prepoznaje presek ova dva jezika (tj. reči koje ispunjavaju i jedan i drugi
uslov) dat je u donjem delu slike.
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Osobine prepoznatljivih jezika

Teorema 6

Ako su jezici L1 i L2 prepoznatljivi, tada je i jezik L1 · L2 prepoznatljiv.

Teorema 7

Ako je jezik L prepoznatljiv, tada je i jezik L∗ prepoznatljiv.

Napomena

Dokazi ove dve teoreme slede iz Tompsonove konstrukcije koju ćemo raditi kasnije, te ih
ovde izostavljamo.

Teorema 8

Svaki regularan jezik je prepoznatljiv (tj. R(Σ) ⊆ P(Σ)).

Dokaz

Lako se mogu konstruisati automati koji prepoznaju jezike ∅, {ε} i {a}. Sada iz
zatvorenosti klase prepoznatljivih jezika za uniju, dopisivanje i Klinijevo zatvorenje sledi
teorema.
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Konstrukcija automata po regularnom izrazu

Pregled

1 Uvod u automate

2 Pojam konačnog automata

3 Potpuni deterministički konačni automati

4 Osobine prepoznatljivih jezika

5 Konstrukcija automata po regularnom izrazu

6 Minimizacija konačnih automata

7 Konstrukcija regularnog izraza za dati automat

8 Lema o razrastanju
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Konstrukcija automata po regularnom izrazu

Kako odrediti automat koji prepoznaje dati regularni jezik?

Iz prethodne teoreme sledi da se svaki automat opisan
regularnim izrazom može prepoznati nekim konačnim
automatom

Ostaje pitanje efektivne konstrukcije takvog automata

U nastavku izlažemo dve takve konstrukcije: Tompsonovu i
Gluškovljevu konstrukciju
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Tompsonova konstrukcija

Tompsonova konstrukcija

Definicija 5

Automat je normalizovan ako:

ima tačno jedno početno i jedno zavřsno stanje
ni jedan luk mu ne ulazi u početno stanje niti izlazi iz zavřsnog stanja
iz svakog stanja izlazi ili tačno jedan luk sa etiketom iz Σ ili najvǐse
dva luka sa etiketom ε

Teorema 9

Za svaki regularni jezik L postoji normalizovan konačni automat koji ga
prepoznaje.

Dokaz

Dokaz sledi iz opisa konstrukcije u nastavku koja je poznata i kao
Tompsonova konstrukcija.
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Konstrukcija automata po regularnom izrazu

Tompsonova konstrukcija

Tompsonova konstrukcija

Jezik ∅

Jezik {ε}

Jezik {a}
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Konstrukcija automata po regularnom izrazu

Tompsonova konstrukcija

Tompsonova konstrukcija

Jezik L1 ∪ L2

Jezik L1 · L2
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Konstrukcija automata po regularnom izrazu

Tompsonova konstrukcija

Tompsonova konstrukcija

Jezik L∗

Jezik L+

Jezik L?
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Konstrukcija automata po regularnom izrazu

Tompsonova konstrukcija

Tompsonova konstrukcija

Definicija 6

Obim regularnog izraza r (u oznaci |r |) definǐsemo na sledeći način:

|∅| = |ε| = |a| = 1
|r1 | r2| = |r1|+ |r2|+ 1
|r1r2| = |r1|+ |r2|
|r∗| = |r+| = |r?| = |r |+ 1

Dakle, u pitanju je ukupan broj simbola u izrazu, ne računajući zagrade.

Teorema 10

Neka je dat regularni izraz r obima m sa k simbola iz Σ u sebi. Automat dobijen
Tompsonovom konstrukcijom je normalizovan i ima najvǐse 2m stanja i najvǐse 4m
prelaza, od čega je tačno k ne-ε-prelaza.

Dokaz

Ne-ε-prelazi odgovaraju slovima (tj. elementima azbuke Σ) u izrazu, pa je njihov broj
jednak k. Svaki simbol u regularnom izrazu (ne račujajući zagrade) uvodi tačno dva nova
stanja pa ukupan broj stanja ne može biti veći od 2m (može biti manji, jer operacijom
dopisivanja stapamo dva stanja u jedno). Takode, svaki simbol uvodi najvǐse četiri nova
prelaza. Normalizovanost sledi iz činjenice da svaki od konstruktivnih koraka čuva
normalizovanost.
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Konstrukcija automata po regularnom izrazu

Tompsonova konstrukcija

Tompsonova konstrukcija

Primer

Neka je dat regularni izraz: (a|b)∗aab. Automat dobijen Tompsonovom
konstrukcijom na osnovu ovog izraza je:

Ovaj automat je nedeterministički. Da bismo ga determinizovali, najpre
odredujemo ε-zatvorenja: ε(0) = {0, 1, 2, 3, 7}, ε(1) = {1, 2, 3}, ε(2) = {2},
ε(3) = {3}, ε(4) = {1, 2, 3, 4, 6, 7}, ε(5) = {1, 2, 3, 5, 6, 7},
ε(6) = {1, 2, 3, 6, 7}, ε(7) = {7}, ε(8) = {8}, ε(9) = {9}, ε(10) = {10}.
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Konstrukcija automata po regularnom izrazu

Tompsonova konstrukcija

Tompsonova konstrukcija

Primer

Nakon što smo odredili ε-zatvorenja, primenjujemo konstrukciju po podskupovima i dobijamo
PDKA:

pri čemu je A = ε(0) = {0, 1, 2, 3, 7}, B = ε(4) ∪ ε(8) = {1, 2, 3, 4, 6, 7, 8},
C = ε(5) = {1, 2, 3, 5, 6, 7}, D = ε(4) ∪ ε(8) ∪ ε(9) = {1, 2, 3, 4, 6, 7, 8, 9} i
E = ε(5) ∪ ε(10) = {1, 2, 3, 5, 6, 7, 10}. Primetimo da broj stanja dobijenog konačnog automata
nije tako veliki, s obzirom da u polaznom automatu imamo samo nekoliko ne-ε-prelaza koji nam
efektivno odreduju stanja PDKA (svako stanje je unija nekih od ε-zatvorenja stanja na kojima

se zavřsavaju ne-ε-prelazi polaznog automata). Ti prelazi su u ovom primeru 2
a−→ 4, 3

b−→ 5,

7
a−→ 8, 8

a−→ 9, 9
b−→ 10.



Prevodenje programskih jezika – beleške sa predavanja Konačni automati

Konstrukcija automata po regularnom izrazu

Tompsonova konstrukcija

Tompsonova konstrukcija

Primer

Neka je dat regularni izraz: (ab|b∗a+)∗. Automat dobijen Tompsonovom konstrukcijom na
osnovu ovog izraza je:

Ne-ε-prelazi u ovom automatu su 3
b−→ 4, 6

a−→ 7, 9
a−→ 10, 10

b−→ 11, a ε-zatvorenja su:
ε(0) = {0, 1, 2, 3, 5, 6, 9, 13}, ε(1) = {1, 2, 3, 5, 6, 9}, ε(2) = {2, 3, 5, 6}, ε(3) = {3},
ε(4) = {3, 4, 5, 6}, ε(5) = {5, 6}, ε(6) = {6}, ε(7) = {1, 2, 3, 5, 6, 7, 8, 9, 12, 13},
ε(8) = {1, 2, 3, 5, 6, 8, 9, 12, 13}, ε(9) = {9}, ε(10) = {10}, ε(11) = {1, 2, 3, 5, 6, 9, 11, 12, 13},
ε(12) = {1, 2, 3, 5, 6, 9, 12, 13}, ε(13) = {13}.
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Konstrukcija automata po regularnom izrazu

Tompsonova konstrukcija

Tompsonova konstrukcija

Primer

Nakon primene konstrukcije po podskupovima dobijamo sledeći automat:

gde je A = ε(0) = {0, 1, 2, 3, 5, 6, 9, 13}, B = ε(7) ∪ ε(10) = {1, 2, 3, 5, 6, 7, 8, 9, 10, 12, 13},
C = ε(4) = {3, 4, 5, 6}, D = ε(7) = {1, 2, 3, 5, 6, 7, 8, 9, 12, 13},
E = ε(4) ∪ ε(11) = {1, 2, 3, 4, 5, 6, 9, 11, 12, 13}.
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Konstrukcija automata po regularnom izrazu

Tompsonova konstrukcija

Tompsonova konstrukcija

Primer

Neka je dat regularni izraz: (ab?|ba)+. Automat dobijen Tompsonovom
konstrukcijom na osnovu ovog izraza je:

Ne-ε-prelazi u ovom automatu su 2
a−→ 3, 4

b−→ 5, 7
b−→ 8, 8

a−→ 9, a ε-zatvorenja su:
ε(0) = {0, 1, 2, 7}, ε(1) = {1, 2, 7}, ε(2) = {2}, ε(3) = {1, 2, 3, 4, 6, 7, 10, 11},
ε(4) = {4}, ε(5) = {1, 2, 5, 6, 7, 10, 11}, ε(6) = {1, 2, 6, 7, 10, 11}, ε(7) = {7},
ε(8) = {8}, ε(9) = {1, 2, 7, 9, 10, 11}, ε(10) = {1, 2, 7, 10, 11}, ε(11) = {11}.
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Konstrukcija automata po regularnom izrazu

Tompsonova konstrukcija

Tompsonova konstrukcija

Primer

Nakon primene konstrukcije po podskupovima dobijamo sledeći automat:

gde je A = ε(0) = {0, 1, 2, 7}, B = ε(3) = {1, 2, 3, 4, 6, 7, 10, 11}, C = ε(8) = {8},
D = ε(5) ∪ ε(8) = {1, 2, 5, 6, 7, 8, 10, 11}, E = ∅, F = ε(9) = {1, 2, 7, 9, 10, 11},
G = ε(3) ∪ ε(9) = {1, 2, 3, 4, 6, 7, 9, 10, 11}. Primetimo da je E stanje greške.
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Konstrukcija automata po regularnom izrazu

Konstrukcija Gluškova

Konstrukcija Gluškova

Konstrukcija Gluškova

Neka je dat regularni izraz r . Primenjujemo sledeći postupak:

Izraz r transformǐsemu u linearizovani oblik:

ovaj oblik dobijamo tako što redom sa leva na desno indeksiramo slova iz Σ koja se
nalaze u izrazu r indeksima počev od 1
Na primer, linearizovani oblik izraza (a|b)∗aab je (a1|b2)∗a3a4b5

Za svaki od indeksa u linearizovanom obliku izraza r formiramo po jedno stanje
označeno tim indeksom

dodatno, imamo i stanje 0 koje je početno stanje

Ako je indeksom i u linearizovanom obliku izraza r indeksiran simbol s ∈ Σ, tada će
svi prelazi koji ulaze u stanje i imati etiketu s

iz početnog stanja 0 imamo prelaze ka svim stanjima koja odgovaraju simbolima kojima
može počinjati neka reč jezika L(r)
iz stanja i > 0 imamo prelaze ka svim stanjima koja odgovaraju simbolima koji mogu
slediti neposredno nakon simbola koji odgovara stanju i u nekoj reči jezika L(r)

Zavřsna stanja dobijenog automata će biti sva ona stanja koja odgovaraju simbolima
kojima se može zavřsiti neka reč jezika L(r)

specijalno, stanje 0 će biti zavřsno akko ε ∈ L(r)
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Konstrukcija automata po regularnom izrazu

Konstrukcija Gluškova

Konstrukcija Gluškova

Teorema 11

Automat dobijen konstrukcijom Gluškova ima k + 1 stanje, gde je k
broj simbola iz Σ koja se pojavljuju u izrazu r (pri čemu se svako
pojavljivanje nekog simbola posebno broji). Pritom, dobijeni automat
nema ε-prelaza.

Dokaz

Trivijalno sledi iz opisa konstrukcije.

Primedba

Iako dobijeni automat nema ε-prelaza, on ne mora biti (i najčešće nije)
deterministički.
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Konstrukcija automata po regularnom izrazu

Konstrukcija Gluškova

Konstrukcija Gluškova

Primer

Neka je dat regularni izraz: (a|b)∗aab. Linearizovani oblik ovog izraza je
(a1|b2)∗a3a4b5, a automat dobijen konstrukcijom Gluškova je:
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Konstrukcija automata po regularnom izrazu

Konstrukcija Gluškova

Konstrukcija Gluškova

Primer

Primenom konstrukcije po podskupovima dobijamo PDKA:

gde je A = {0}, B = {1, 3}, C = {2}, D = {1, 3, 4}, E = {2, 5}.
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Konstrukcija automata po regularnom izrazu

Konstrukcija Gluškova

Konstrukcija Gluškova

Primer

Neka je dat regularni izraz: (ab|b∗a+)∗. Linearizovani oblik ovog izraza je
(a1b2|b∗3a

+
4 )

∗ , a automat dobijen konstrukcijom Gluškova je:
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Konstrukcija automata po regularnom izrazu

Konstrukcija Gluškova

Konstrukcija Gluškova

Primer

Primenom konstrukcije po podskupovima dobijamo PDKA:

gde je A = {0}, B = {1, 4}, C = {3}, D = {2, 3}, E = {4}.
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Konstrukcija automata po regularnom izrazu

Konstrukcija Gluškova

Konstrukcija Gluškova

Primer

Neka je dat regularni izraz: (ab?|ba)+. Linearizovani oblik ovog izraza je
(a1b

?
2|b3a4)+ , a automat dobijen konstrukcijom Gluškova je:
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Konstrukcija automata po regularnom izrazu

Konstrukcija Gluškova

Konstrukcija Gluškova

Primer

Primenom konstrukcije po podskupovima dobijamo PDKA:

gde je A = {0}, B = {1}, C = {1, 4}, D = {2, 3}, E = ∅, F = {3} i G = {4}.
Primetimo da je E stanje greške.
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Konstrukcija automata po regularnom izrazu

Konstrukcija Gluškova

Tompson vs. Gluško

Tompsonova konstrukcija

Pogodna je za automatizaciju, jer prati strukturu izraza i primenjuje jasno
definisane konstruktivne korake
Automat koji se dobija obično ima veliki broj ε-prelaza, kao i veliki broj
stanja
Ovo predstavlja poteškoću u postupku determinizacije prilikom ručne
primene (,,na papiru”), ali ne i prilikom implementacije

Gluškovljeva konstrukcija

Nije pogodna za automatizaciju, ali je lakša za ručnu primenu
Konstrukcijom se ne dobijaju ε-prelazi, a broj stanja dobijenog automata
je obično znatno manji nego u slučaju Tompsonove konstrukcije
Postupak determinizacije je otuda znatno lakši nad automatom koji je
dobijen Gluškovljevom konstrukcijom
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Minimizacija konačnih automata

Pregled

1 Uvod u automate

2 Pojam konačnog automata

3 Potpuni deterministički konačni automati

4 Osobine prepoznatljivih jezika

5 Konstrukcija automata po regularnom izrazu

6 Minimizacija konačnih automata

7 Konstrukcija regularnog izraza za dati automat

8 Lema o razrastanju



Prevodenje programskih jezika – beleške sa predavanja Konačni automati

Minimizacija konačnih automata

Minimizacija konačnih automata

Da li je PDKA za neki jezik jedinstven?

Odgovor na ovo pitanje je NE

Vratiti se na primer sa slajda 31: dva različita postupka determinizacije (sa
prethodnom eliminacijom ε-prelaza i bez nje) su nam dala dva različita
PDKA
ova dva automata su imala različit broj stanja

Ova činjenica otežava situaciju prilikom ispitivanja ekvivalentnosti
regularnih izraza

to što smo za dva regularna izraza dobili različite PDKA i dalje ne znači da
ta dva izraza predstavljaju različite jezike

Ukoliko zahtevamo da broj stanja PDKA bude najmanji mogući, da li
ćemo tada imati jedinstvenost?

Definicija 7

PDKA je minimalan (u oznaci MPDKA), ako ne postoji PDKA sa manjim
brojem stanja koji prepoznaje isti jezik.
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Minimizacija konačnih automata

Minimizacija konačnih automata

Definicija 8

Jezik stanja q ∈ Q (u oznaci Lq) automata A = (Σ,Q, i ,F , δ} definǐsemo kao skup
svih reči koje su etikete nekog izračunavanja koje polazi iz stanja q i zavřsava u
nekom zavřsnom stanju automata. Formalno: Lq = {w | ∃c f . c : q

w
=⇒ f ∧ f ∈ F}.

Napomena

Kako je u PDKA izračunavanje sa etiketom w koje polazi iz q jedinstveno, važiće
w ∈ Lq akko je stanje f u koje se stiže tim jedinstvenim izračunavanjem zavřsno.

Primedba

Ako je i ∈ Q početno stanje PDKA A, tada je Li = L(A).

Definicija 9

Stanja p i q nekog automata su nerazlikujuća akko je Lp = Lq.
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Minimizacija konačnih automata

Minimizacija konačnih automata

Nerazlikujuća stanja predstavljaju redundantna stanja u automatu

Svaka dva (ili vǐse) nerazlikujuća stanja se mogu stopiti u jedno stanje, čime se broj stanja
smanjuje

Definicija 10

Nerodova ekvivalencija je relacija ekvivalencije medu stanjima automata definisana na sledeći
način: p ∼ q ⇔ Lp = Lq.

Važna napomena

Može se pokazati da je automat čija su stanja klase ekvivalencije relacije ∼ (tzv. količnički
automat) PDKA sa najmanjim mogućim brojem stanja koji prepoznaje isti jezik kao i polazni
automat:

Ovaj automat je jedinstven do na izomorfizam
Otuda imamo postupak odlučivanja o ekvivalentnosti dva regularna izraza:

primenimo Tompsonovu (ili Gluškovljevu) konstrukciju na oba regularna izraza
determinizujemo dobijene konačne automate
za oba automata odredimo Nerodovu ekvivalenciju ∼ i formiramo količničke automate
polazni izrazi su ekvivalentni akko su dobijeni MPDKA izomorfni

Pored toga, minimizacija automata ima i praktični značaj (lakše se programira, zauzima
manje memorije, i sl.)
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Minimizacija konačnih automata

Minimizacija konačnih automata

Kako odrediti relaciju ∼

Ideja je da se relacija ∼ formira iterativno:

Neka je L
(k)
q = {w | w ∈ Lq ∧ |w | ≤ k}

Neka je p ∼k q ⇔ L
(k)
p = L

(k)
q

Sada važe sledeća tvrdenja:

∀k ∈ N. p ∼ q ⇒ p ∼k q ⇒ p ∼k−1 q
∀k ∈ N. ∼k−1⊇∼k⊇∼
dakle, imamo: ∼0⊇∼1⊇∼2⊇∼3⊇ . . . ⊇∼
∼=

⋂∞
k=0 ∼k

∃k ∈ N. ∼k=∼k+1

ako za neko k važi da je ∼k=∼k+1, tada će važiti ∼=∼k

p ∼0 q akko su ili oba ova stanja zavřsna ili oba nezavřsna
p ∼1 q ⇔ p ∼0 q ∧ (∀a ∈ Σ. δ(p, a) ∼0 δ(q, a))
p ∼2 q ⇔ p ∼1 q ∧ (∀a ∈ Σ. δ(p, a) ∼1 δ(q, a))
p ∼k q ⇔ p ∼k−1 q ∧ (∀a ∈ Σ. δ(p, a) ∼k−1 δ(q, a)) (indukcijom)

Postupak minimizacije se sada svodi na iterativno odredivanje relacija ∼0,∼1,∼2, . . . dokle god
ima promena, tj. dokle god je ∼k ̸=∼k+1. Kada to vǐse nije slučaj, dobijena relacija je upravo
Nerodova ekvivalencija ∼. Opisani postupak poznat je i kao Murov algoritam.
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Minimizacija konačnih automata

Minimizacija konačnih automata

Primer

Dat je automat na slici:

Formirajmo ∼k relacije:

∼0: {A,G} {B,C ,D,E ,F}
∼1: {A,G} {E}, {B,C ,D,F}
∼2: {A}, {G} {E}, {B,C ,D,F}
∼3: {A}, {G} {E}, {B,C ,D,F}

Kako je ∼2=∼3, sledi da je ∼=∼2.
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Minimizacija konačnih automata

Minimizacija konačnih automata

Primer

Koristeći klase ekvivalencije dobijene relacije ∼ kao stanja, dobijamo sledeći količnički
automat:

Ovaj automat je MPDKA ekvivalentan polaznom. Početno stanje ovog automata
odgovara klasi ekvivalencije kojoj pripada početno stanje polaznog automata. Zavřsna
stanja ovog automata su sva stanja koja se sastoje iz zavřsnih stanja polaznog automata.
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Minimizacija konačnih automata

Minimizacija konačnih automata

Primer

Dat je automat na slici:

Formirajmo ∼k relacije:

∼0: {A,B,C ,D} {E}
∼1: {A,B,C}, {D} {E}
∼2: {A,C}, {B}, {D} {E}
∼3: {A,C}, {B}, {D} {E}

Kako je ∼2=∼3, sledi da je ∼=∼2.



Prevodenje programskih jezika – beleške sa predavanja Konačni automati

Minimizacija konačnih automata

Minimizacija konačnih automata

Primer

Koristeći klase ekvivalencije dobijene relacije ∼ kao stanja, dobijamo
sledeći količnički automat:

Ovaj automat je MPDKA ekvivalentan polaznom.
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Minimizacija konačnih automata

Minimizacija konačnih automata

Primer

Dat je automat na slici:

Formirajmo ∼k relacije:

∼0: {C} {A,B,D,E}
∼1: {C} {B}, {A,D,E}
∼2: {C} {B}, {A,D,E}

Kako je ∼1=∼2, sledi da je ∼=∼1.
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Minimizacija konačnih automata

Minimizacija konačnih automata

Primer

Koristeći klase ekvivalencije dobijene relacije ∼ kao stanja, dobijamo sledeći
količnički automat:

Ovaj automat je MPDKA ekvivalentan polaznom.
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Minimizacija konačnih automata

Minimizacija konačnih automata

Primer

Dat je automat na slici:

Formirajmo ∼k relacije:

∼0: {A,E ,F} {B,C ,D,G}
∼1: {A,F}, {E} {B,C}, {D,G}
∼2: {A}, {F}, {E} {B,C}, {D,G}
∼3: {A}, {F}, {E} {B,C}, {D,G}

Kako je ∼2=∼3, sledi da je ∼=∼2.
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Minimizacija konačnih automata

Minimizacija konačnih automata

Primer

Koristeći klase ekvivalencije dobijene relacije ∼ kao stanja, dobijamo
sledeći količnički automat:

Ovaj automat je MPDKA ekvivalentan polaznom.
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Minimizacija konačnih automata

Minimizacija konačnih automata

Važna napomena

Murov algoritam ne uklanja nedostižna stanja, ukoliko postoje
Otuda je pre postupka minimizacije potrebno potkresati automat, da bi rezultat bio ispravan

Primer

Posmatrajmo automat:

Lako se vidi da u ovom automatu nema nerazlikujućih stanja. Ipak, on nije minimalni PDKA, jer i automat:

prepoznaje isti jezik.
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Konstrukcija regularnog izraza za dati automat

Pregled

1 Uvod u automate

2 Pojam konačnog automata

3 Potpuni deterministički konačni automati

4 Osobine prepoznatljivih jezika

5 Konstrukcija automata po regularnom izrazu

6 Minimizacija konačnih automata

7 Konstrukcija regularnog izraza za dati automat

8 Lema o razrastanju
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Konstrukcija regularnog izraza za dati automat

Konstrukcija regularnog izraza za dati automat

Da li je svaki prepoznatljiv jezik regularan?

Ranije smo ustanovili da je svaki regularan jezik prepoznatljiv
(R(Σ) ⊆ P(Σ))
Da li važi obrnuta inkluzija: P(Σ) ⊆ R(Σ)?
Drugim rečima, da li za svaki konačni automat postoji regularni
izraz koji opisuje isti jezik?
Odgovor na ovo pitanje je DA
Dokaz ove činjenice sledi iz postojanja algoritama koji
konstruǐsu regularni izraz na osnovu automata:

Metod eliminacije stanja (izložen u nastavku)
Algoritam zasnovan na sistemu jednačina pridruženih automatu
Algoritam Mek Notona i Jamade
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Konstrukcija regularnog izraza za dati automat

Metod eliminacije stanja

Definicija 11

Konačni automat kod koga etikete prelaza mogu biti proizvoljni regularni izrazi nad Σ (a ne samo
simboli iz Σ i ε) nazivamo uopšteni konačni automat.

Metod eliminacije stanja

Neka je A proizvoljan PDKA. Posmatrajmo A kao uopšteni konačni automat. Označimo sa Rpq

regularni izraz kojim je etiketiran prelaz od p do q (ako postoji). Na ovaj automat primenjujemo sledeći
postupak:

Dodajemo jedno novo početno stanje i i jedno novo zavřsno stanje f (ovo postaju jedino početno,
odnosno zavřsno stanje)

dodajemo luk od i do (starog) početnog stanja automata A sa etiketom ε
dodajemo lukove od svih starih zavřsnih stanja automata A do stanja f sa etiketom ε

Eliminǐsemo jedno po jedno stanje automata (izuzev i i f ) u proizvoljnom poretku na sledeći način:

označimo stanje koje želimo da eliminǐsemo sa q

neka su p i r dva stanja različita od q takva da postoji lukovi p
Rpq−−→ q i q

Rqr−−→ r

ova dva luka zamenjujemo novim lukom p
RpqR

∗
qqRqr | Rpr−−−−−−−−−→ r

opciono, ako neki od lukova q
Rqq−−→ q (petlja) i p

Rpr−−→ r ne postoji, odgovarajući deo izraza se izostavlja
ovo uradimo za svaka takva dva stanja p i r (ne obavezno medusobno različita)

Kada ostanu samo stanja i i f , luk koji ih spaja biće etiketiran regularnim izrazom Rif koji opisuje
jezik polaznog automata
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Konstrukcija regularnog izraza za dati automat

Metod eliminacije stanja

Primer

Posmatrajmo automat na slici:

Uvedimo najpre nova početna i zavřsna stanja:

Zatim eliminǐsemo stanje 0, tako što formiramo novi luk od i do 1:
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Konstrukcija regularnog izraza za dati automat

Metod eliminacije stanja

Primer

(nastavak) Zatim eliminǐsemo stanje 1 tako što formiramo luk od i do 2

Najzad eliminǐsemo i stanje 2, uvodenjem luka od i do f :

Regularni izraz nad ovim lukom opisuje jezik polaznog automata.
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Konstrukcija regularnog izraza za dati automat

Metod eliminacije stanja

Primer

Posmatrajmo automat na slici:

Uvedimo najpre novo početno stanje i i novo zavřsno stanje f :
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Konstrukcija regularnog izraza za dati automat

Metod eliminacije stanja

Primer

(nastavak) Sada eliminǐsemo stanje 1:

a zatim i stanje 0:

Dobijeni regularni izraz opisuje jezik automata.
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Konstrukcija regularnog izraza za dati automat

Metod eliminacije stanja

Napomena

Iako je teorijski potpuno svejedno u kom poretku se eliminǐsu
stanja, dobijeni regularni izraz će zavisiti od izabranog poretka

Setimo se da možemo imati različite regularne izraze koji
opisuju isti jezik

U praksi, izborom ,,pravog” poretka dobijamo jednostavniji
regularni izraz

Ne postoji egzaktan metod koji nam odreduje poredak koji
daje najjednostavniji izraz
Dobra heuristika: eliminǐsemo prvo stanje koje zahteva
dodavanje najmanjeg broja novih lukova
Zadatak: pokušajte da u prethodnom primeru prvo eliminǐsete
stanje 0
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Konstrukcija regularnog izraza za dati automat

Metod eliminacije stanja

Napomena

Novo početno stanje i je neophodno uvoditi da bismo postigli
da ni jedan luk ne ulazi u početno stanje automata

Ako je to slučaj već u polaznom automatu, tada se stanje i ne
mora uvoditi, što pojednostavljuje postupak

Slično, novo zavřsno stanje f se uvodi da bismo postigli da
imamo tačno jedno zavřsno stanje iz koga ne izlazi ni jedan
luk

ako je ovo ispunjeno u polaznom automatu, onda stanje f ne
moramo uvoditi
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Konstrukcija regularnog izraza za dati automat

Metod eliminacije stanja

Primer

Posmatrajmo automat na slici:

Uvedimo novo zavřsno stanje f (novo početno stanje nije neophodno, jer u 0 ne ulazi ni jedan luk):
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Konstrukcija regularnog izraza za dati automat

Metod eliminacije stanja

Primer

(nastavak) Sada eliminǐsemo stanje 1:

a zatim i stanje 2:

Najzad, eliminǐsemo i stanje 3:

Dobijeni regularni izraz opisuje jezik automata.
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Konstrukcija regularnog izraza za dati automat

Metod eliminacije stanja

Primer

Posmatrajmo automat na slici:

Uvedimo novo zavřsno stanje f (novo početno stanje nije neophodno, jer u 0 ne ulazi ni jedan luk):
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Konstrukcija regularnog izraza za dati automat

Metod eliminacije stanja

Primer

(nastavak) Sada eliminǐsemo stanje 4 (,,stanje greške”):

a zatim i stanje 3:
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Konstrukcija regularnog izraza za dati automat

Metod eliminacije stanja

Primer

(nastavak) Zatim eliminǐsemo stanje 1:

a zatim i stanje 2:

Dobijeni regularni izraz opisuje jezik automata.
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Konstrukcija regularnog izraza za dati automat

Klinijeva teorema

Teorema 12

Klase regularnih i prepoznatljivih jezika se poklapaju, tj.:
R(Σ) = P(Σ).

Dokaz

Implikacija R(Σ) ⊆ P(Σ) je dokazana ranije (npr. Tompsonova
konstrukcija). Metod eliminacije stanja je dokaz da važi i drugi
smer P(Σ) ⊆ R(Σ). Otuda važi gornja skupovna jednakost.

Napomena

Ova teorema poznata je i kao Klinijeva teorema i najznačajnija je
teorema u teoriji regularnih jezika i konačnih automata.
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Konstrukcija regularnog izraza za dati automat

Jedan zanimljiv primer

Šta je starije, automat ili izraz?

U većini slučajeva nam je zgodnije da najpre jezik opǐsemo
regularnim izrazom, pa da za njega konstruǐsemo automat

Ipak, ponekad nije tako lako opisati jezik regularnim izrazom,
ali je lako napraviti automat koji ga prepoznaje

Tada možemo napraviti automat, a onda metodom eliminacije
stanja dobiti regularni izraz (ako nam je uopšte potreban)
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Konstrukcija regularnog izraza za dati automat

Jedan zanimljiv primer

Primer

Želimo da regularnim izrazom opǐsemo jezik svih binarnih brojeva koji su
deljivi sa 3. Da bismo to uradili, posmatraćemo na koji se način menja
ostatak pri deljenju sa 3 kada na neki binarni broj dopǐsemo cifru 0 ili 1.
Označimo sa w tekuću binarnu reč. Neka je w0 odnosno w1 reč koja se
dobija dopisivanjem 0 odnosno 1 na w. Označimo sa x binarni broj koji je
predstavljen zapisom w. Tada zapis w0 predstavlja broj 2x, a w1
predstavlja broj 2x + 1. Sada važi:

Ako je x mod 3 = 0, tada je 2x mod 3 = 0, a 2x + 1 mod 3 = 1
Ako je x mod 3 = 1, tada je 2x mod 3 = 2, a 2x + 1 mod 3 = 0
Ako je x mod 3 = 2, tada je 2x mod 3 = 1, a 2x + 1 mod 3 = 2

Imajući ovo u vidu, formiramo automat (na sledećem slajdu).
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Konstrukcija regularnog izraza za dati automat

Jedan zanimljiv primer

Primer

(nastavak) Traženi automat je:

Da bismo dobili regularni izraz na osnovu ovog automata, dodajemo najpre novo zavřsno stanje:
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Konstrukcija regularnog izraza za dati automat

Jedan zanimljiv primer

Primer

(nastavak) Sada eliminǐsemo stanje 0

a zatim i stanje 2:
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Konstrukcija regularnog izraza za dati automat

Jedan zanimljiv primer

Primer

(nastavak) Na kraju eliminǐsemo stanje 1:

Dobijeni regularni izraz opisuje traženi jezik.
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Lema o razrastanju

Pregled

1 Uvod u automate

2 Pojam konačnog automata

3 Potpuni deterministički konačni automati

4 Osobine prepoznatljivih jezika

5 Konstrukcija automata po regularnom izrazu

6 Minimizacija konačnih automata

7 Konstrukcija regularnog izraza za dati automat

8 Lema o razrastanju
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Lema o razrastanju

Lema o razrastanju

Setimo se leme o razrastanju koju smo ranije naveli bez dokaza:

Lema 1

Neka je L regularan jezik. Tada postoji neko p ∈ N (koje zavisi
samo od jezika L), takvo da za svaku reč w ∈ L za koju je |w | ≥ p
važi da se w može predstaviti u obliku w = xzy, gde je |z | ≥ 1,
|xz | ≤ p i xzky ∈ L za svako k ∈ N0.

Sada kada poznajemo konačne automate, možemo da dokažemo
ovu lemu sasvim jednostavno.
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Dokaz

Neka je A jedinstveni MPDKA koji prepoznaje dati regularni jezik L. Neka
je p broj stanja ovog automata i neka je w bilo koja reč jezika L dužine
bar p. Postoji jedinstveno izračunavanje c : s

w
=⇒ f , gde je s početno, a f

jedno od zavřsnih stanja automata A. Kako je reč w dužine bar p, ovo
izračunavanje će bar dva puta proći kroz jedno isto stanje,

tj. izračunavanje c mora biti oblika: s
a1−→ q1

a2−→ q2
a3−→ . . .

ai−→ qi
ai+1−−→

qi+1
ai+2−−→ . . .

aj−→ qi
aj+1−−→ qj+1

aj+2−−→ . . .
an−→ f , gde je w = a1a2 . . . an.

Pritom, prvo ponavljanje stanja mora biti nakon najvǐse p koraka, tj. j ≤ p.
Sada možemo uzeti x = a1 . . . ai , z = ai+1 . . . aj i y = aj+1 . . . an. Za
ovakvu podelu reči važiće |z | ≥ 1 i |xz | = j ≤ p. Pritom, reč z automat
vodi od stanja qi ponovo do stanja qi , pa se ova reč može na tom mestu
ponavljati 0 ili vǐse puta, ne remeteći ostatak izračunavanja. Otuda će
svaka reč oblika xzky biti u jeziku L (k = 0, 1, 2 . . . ).
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