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Uvod u automate

Definicija 1
Automati su formalni modeli izra¢unavanja koji omogucavaju prepoznavanje jezika,
tj. ispitivanje da li data re¢ pripada nekom fiksiranom jeziku.

m Za svaki fiksirani jezik konstruise se poseban automat koji prepoznaje samo taj jezik
m Automat na ulazu prihvata re, a na izlazu daje odgovor: da (pripada) ili ne (ne
pripada jeziku automata)
m Otuda je automat model procedure odlu&ivanja za problem pripadanja jeziku
m Automati su bliski Tjuringovim masinama, ali im je mo¢ prepoznavanja manja:
m Tjuringova masina predstavlja model proizvoljnog algoritma i pomo¢u nje se moze
opisati proizvoljna procedura (polu)odlutivanja
m Automati predstavljaju model uZe klase algoritama za prepoznavanje jezika koji
pripadaju odredenim klasama (poput regularnih jezika, kontekstno slobodnih jezika, i
td.)
m Sa druge strane, automati su jednostavniji od Tjuringovih maina
m SloZenost izratunavanja automata je, u slu€aju deterministi¢kih automata, linearna u
odnosu na duZinu re&i na ulazu
m Jednom definisani automat se relativno lako moZe implementirati u vecini programskih
Jjezika
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Vrste automata

Neke znacajne klase automata:

m Kona&ni automati (engl. finite state automata) — prepoznaju regularne
jezike
m Potisni automati (engl. push-down automata) — prepoznaju kontekstno
slobodne jezike
m Linearno ograniteni automati (engl. linear bounded automata) —
prepoznaju kontekstno zavisne jezike
m U kontekstno zavisnim gramatikama leve strane pravila mogu biti proizvoljne
niske iz (X U N)*, uz uslov da desna strana pravila ne bude kraca od leve
m Na primer, moZemo imati pravilo aSb — acb, $to zna&i da se simbol S
moZe zameniti sa ¢ samo kada se nalazi u datom ,,kontekstu” (izmedu a i b)
m Sa druge strane, kontekstno slobodno pravilo S — ¢ omogucava zamenu S
sa ¢ uvek, bez obzira na kontekst
m Klasa kontekstno zavisnih jezika sadrZi u sebi sve kontekstno slobodne jezike
koji ne sadrZe praznu ret

m Potisni automati sa dva steka — ekvivalentni su sa Tjuringovim masinama
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Konaéni automati

Primer
Konaéni automat se moZe predstaviti u obliku grafa:

Cvorovi grafa predstavijaju stanja kojih ima kona&no mnogo. Lukovi grafa predstavijaju prelaze. Prelazi
su oznaleni simbolima azbuke ¥ (u naSem primeru ¥ = {a, b}). Stanja u koja ulazi strelica koja ne
izlazi ni iz jednog stanja se nazivaju pocetna stanja (stanje 0 kod nas). Stanja koja su oznadena
dvostrukim kruZiéem se nazivaju zavrsna stanja (opet stanje 0 kod nas). Kao $to se vidi, stanje moZe
istovremeno biti i po&etno i zavrsno.

Automat polazi iz nekog pocetnog stanja i &ita slovo po slovo re¢i w € ¥* sa ulaza. Za svako procitano
slovo, automat koristi neki od lukova koji je oznacen tim slovom da prede iz tekuceg stanja u neko
sledece stanje. Re¢ je prepoznata automatom ako se nakon &itanja svih slova re¢i automat nalazi u
zavr$nom stanju.

Automat iz ovog primera prepoznaje sve reli koje imaju paran broj slova a u sebi.
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Konaéni automati

Primer

Konacni automat sa sledece slike:

ab

S )——@

prepoznaje sve re¢i nad azbukom ¥ = {a, b} koje se zavrsavaju sa
ab. Ono sto primecujemo na ovom primeru je da kada se nalazimo
u stanju 0, a na ulazu se nalazi slovo a, tada imamo dve
mogucénosti: ili da ostanemo u stanju 0 ili da predemo u stanje 1.
Ovo na$ automat &ini nedeterministi¢kim.
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Konaéni automati

Primer

Konaé&ni automat sa sledece slike:

o
&
b

prepoznaje jezik svih re¢i nad azbukom ¥ = {a, b} koje sadrze bar
jedno slovo a i bar jedno slovo b. Ovaj automat je deterministicki i
potpun: za svako stanje i svako slovo azbuke postoji tacno jedan luk
koji izlazi iz tog stanja i obeleZen je tim slovom.
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Konaéni automati

Definicija 2

Konaé&ni automat je uredena petorka A = (X, Q, I, F,A), gde je:

m X — konacna azbuka automata

m Q — konaéni skup stanja

m | C Q — skup pocetnih stanja

m F C Q — skup zavrsnih stanja

B ACQx(XU{e})x Q — skup prelaza
Prelaz (g, a,r) € A ¢emo obicno zapisivati kao q = r. Izratunavanje ¢ u automatu A je
niz prelaza c : qo 1N q1 22N q2 By L. gn- Pritom, re¢ w = aja ... a, nazivamo
etiketom izra¢unavanja c¢ (u oznaci w = |c|). lzratunavanje ¢ emo krace zapisivati sa
C: qo = qp. lzratunavanje c je uspesno ako krece iz pocetnog stanja i zavrsava u
zavr$nom stanju. Jezik automata A (u oznaci L(A)) je skup etiketa svih uspesnih
izra¢unavanja u automatu:

L(A) ={weX*|3c:q = qnq €l q.cF}

Za jezik kaZemo da je prepoznatljiv ako postoji konaéni automat koji ga prepoznaje. Skup
svih prepoznatljivih jezika nad ¥ oznagavamo sa P(X).
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Konaéni automati

Primedba

Primetimo da je u definiciji automata skup prelaza A podskup od
Q x (XU {e}) x Q: ovo znati da etiketa prelaza moZe biti i prazna
re¢ €. Takve prelaze nazivamo e-prelazi.
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Potpuni deterministi¢ki konaéni automati

Definicija 3

Automat je potpun ako za svako stanje q € Q i svaki simbol a € ¥
postoji prelaz (q,a, r) € A, za bar jedno r € Q.

Upotpunjavanje konaénog automata
Svaki nepotpuni automat se moze upotpuniti dodavanjem stanja
greske Err:

m stanje greske je nezavrsno

m svi prelazi koji nedostaju se usmeravaju ka stanju greske

B iz stanja greske se za sve simbole iz X prelazi u to isto stanje
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Potpuni deterministi¢ki konaéni automati

Automat sa sledece slike:

[a-zA-7_]

prepoznaje jezik svih identifikatora u C-u. Ipak, ovaj automat je
nepotpun — ako naide simbol koji se ne o¢ekuje na tom mestu u

identifikatoru, automat nece moci da napravi prelaz (kaZemo i da
automat zaglavljuje).
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Primer

Automat na sledecoj slici (nad azbukom ASCII karaktera) dobija se
upotpunjavanjem automata iz prethodnog primera:

T\ [a-zA-Z_]

Ovaj (potpuni) automat takode prepoznaje jezik svih identifikatora
u jeziku C.
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U prethodnom primeru, stanje Err je predstavljalo stanje greske. Ovo stanje je
nezavrino i ulaskom u to stanje ostajemo u njemu zauvek. U to stanje se ulazi
u slu€aju nedozvoljenog prefiksa, tj. prefiksa ulaza koji ne predstavlja prefiks ni
jedne redi jezika koji prepoznajemo.

m Ne moraju svi automati imati stanje greske
m Stanje greske postoji u slu€aju da za jezik koji prepoznajemo postoji neki
nedozvoljeni prefiks
m Na primer, kod identifikatora, ¢im naide neki karakter koji se ne moze
pojaviti u identifikatoru ulazimo u stanje greske — naredni karakteri na ulazu
ne mogu ,,popraviti” Stetu koja je nastala nailaskom tog karaktera
m Postoje jezici kod kojih za svaki prefiks iz X* postoji re¢ jezika koja ima
taj prefiks:
m Na primer, u jeziku koji sadrZi paran broj slova a, uvek moZzemo dopisati jo3
jedno a da broj pojavljivanja tog slova u¢inimo parnim
m Dakle, uvek ima nade da ¢e simboli koji nailaze u nastavku ,,popraviti”
trenutno stanje
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Napomene

m Potpunost automata je veoma bitno svojstvo, jer mnoga
teorijska razmatranja o automatima pretpostavljaju potpunost

m U praksi, stanje greske je uglavnom implicitno — kada nemamo
prelaz, prekidamo dalje ¢itanje ulaza i prijavljujemo gresku
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Definicija 4

Konacni automat je deterministicki ako su ispunjeni sledeci uslovi:

m postoji ta¢no jedno poletno stanje

m nema e-prelaza

m za svako q € Q i svako a € ¥ postoji najvise jedno stanje q¢' € Q
takvo da je (q,a,q’) € A.

Napomena

Ako je automat deterministicki i potpun, tada za svako g € Q i svako
a € ¥ postoji tatno jedno stanje ¢’ € Q takvo da je (g, a,q') € A.
Tada moZemo definisati funkciju prelaska:

8(q,a) =4 < (q,a,q) e A
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Teorema 1

Ako je automat deterministicki, tada za svaku re¢ w € ¥* postoji
najvise jedno izratunavanje c : p = q sa etiketom w, takvo da je

pel.

Teorema 2

Ako je automat potpun i deterministi¢ki tada za svaku re¢ w € X*
postoji tacno jedno izraunavanje ¢ : p = q sa etiketom w, takvo

dajepel.
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Napomene

m Deterministi¢ki automat omoguéava prepoznavanje reci u
linearnom vremenu u odnosu na duZinu redi

m Sa druge strane, izvrSavanje nedeterministi¢kih automata se
moze simulirati vra¢anjem unazad (engl. backtracking), 3to u
najgorem slu€aju daje eksponencijalnu sloZenost

m Otuda je poZeljno da automat koji koristimo bude
deterministicki
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Primer

Setimo se automata koji prepoznaje re¢i koje se zavrsavaju sa ab:

ab

S0

Konstatovali smo da je ovaj automat nedeterministi¢ki. Ekvivalentan
deterministi¢ki automat je dat na sledecoj slici:




Prevodenje programskih jezika — beledke sa predavanja Kona&ni automati

LF'otpuni deterministiki kona&ni automati

Potpuni deterministi¢ki konaéni automati

Da li uvek moZemo popraviti nedeterministi¢nost?

m U prethodnom primeru smo do ekvivalentnog deterministi¢kog
automata dosli ad-hoc pristupom
m Da li postoji sistematski pristup determinizaciji kona&nih
automata?
m Da li za svaki nedeterministi¢ki kona¢ni automat postoji njemu
ekvivalentan deterministicki?
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Konstrukcija po podskupovima

Neka je dat nedeterministitki kona&ni automat A = (X, Q,/, F, A).
Njemu ekvivalentan potpun i deterministi¢ki konaéni automat
A= (X,PQ,{l}, F,0) konstruidemo na slede¢i na&in:

m skup stanja automata A je PQ — skup svih podskupova od Q

m skup pocetnih stanja je skup {/}

m skup zavrdnih stanjaje F ={RC Q | RNF # &}

m dakle, zavrsno stanje je svaki podskup od Q koji sadrZi bar
jedno zavrino stanje automata A

m funkcija prelaska automata A je definisana na slede¢i natin:

§(R,a)={q|3reR. rZ q}
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Posmatrajmo ponovo nedeterministicki automat za jezik svih rei koje se zavrsavaju
sa ab:

ab

Konstrukcijom po podskupovima dobija se sledeci automat:
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NedostiZzna stanja

m U deterministi¢ckom automatu iz prethodnog primera postoje stanja
koja su nedostiZna iz poletnog stanja
m Za automat kaZemo da je potkresan (engl. pruned) ako nema
nedostiznih stanja
m Primenom konstrukcije po podskupovima &esto se dobijaju
nepotkresani automati
m Zbog toga nakon konstrukcije po podskupovima moramo da izvr§imo
potkresivanje:
m Obilaskom grafa automata polazedi iz poletnog stanja ozna¢avamo sva
dostizna stanja
m Stanja koja nisu oznaZena kao dostiZzna se elimini¥u iz automata
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Posmatrajmo ponovo deterministi¢ki automat dobijen u prethodnom primeru:

b

Ovaj automat odgovara automatu koji smo dobili ranije ad-hoc pristupom.
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MozZe li bez potkresivanja?

m Konstrukcijom po podskupovima (direktno po definiciji) dobijamo automat sa 2lQl stanja

m U mnogim slu€ajevima, nakon potkresivanja, dobija se automat sa znatno manje stanja

m Otuda je mnogo zgodnije da se umesto potkresivanja odmah konstruiu samo podskupovi koji
odgovaraju dostiZznim stanjima

Algoritam konstrukcije po podskupovima

m Neka je red stanja S inicijalno prazan
m Najpre formiramo potetno stanje automata A (skup / svih potetnih stanja polaznog automata
A=(%,Q,1,F,A ) .
m Potetno stanje dodajemo u skup stanja automata A (kao jedino njegovo potetno stanje), kao i u
red stanja S
m Dokle god je red stanja S neprazan:
m Skidamo naredno stanje R iz reda S
m Za svaki simbol a € ¥ formiramo skup stanja R, = {¢’ € Q | g€ R. ¢ = ¢’}
m Ako stanje R, ne postoji ve¢ u automatu A, dodajemo ga u skup stanja, dodajemo prelaz (R, a, R,) i
dodajemo R, u red S
m Ako stanje R, ve¢ postoji u skupu stanja, tada samo dodajemo prelaz (R, a, R,) u automat
Postupak se zavr$ava kada red S postane prazan
Zavr3na stanja novog automata su sva stanja koja sadrZe bar jedno zavr3no stanje polaznog
automata A
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Polazeéi od nedeterministi¢kog automata:

N
"“E“j)—a( ! /%'@

moZemo najpre konstruisati po&etno stanje (podskup koji se sastoji iz svih po&etnih stanja polaznog automata). U nasem
primeru, to je skup {0}. Zatim konstruiSemo skup koji sadrZi sva stanja u koja se moZe stici preko simbola a iz nekog od
stanja u po&etnom stanju — u nasem primeru to je skup {0,1}. Sligno, skup svih stanja u koje se moZe sti¢i simbolom b iz
nekog od stanja u po&etnom stanju ée biti skup {0} (to stanje ve¢ imamo). Sada za novodobijeno stanje {0,1}
ponavljamo sli¢an postupak po svakom od simbola azbuke: za a dobijamo skup {0,1}, dok za b dobijamo skup {0,2}.
Ponavljanjem postupka za stanje {0,2} dobijamo postojeca stanja {0,1} (za a) i {0} (za b). Ovim se algoritam zavrsava i
dobija se rezultat:
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Konstrukcija po podskupovima i upotpunjavanje

m Algoritam konstrukcije po podskupovima automatski vr3i i upotpunjavanje
automata, ukoliko on prethodno nije bio potpun
m Ukoliko iz nekog stanja polaznog automata nema prelaza po nekom simbolu
azbuke, tada Ce algoritam konstrukcije po podskupovima proizvesti prazan skup
stanja polaznog automata
m Prazan skup je podskup svakog skupa, pa je po definiciji jedno od moguéih stanja
automata koji konstruiSemo
m |z praznog skupa ¢e svi prelazi voditi ponovo u njega samog, jer ne¢emo imati
stanje u njemu iz koga bismo mogli da odemo u neko drugo stanje polaznog
automata
m Prazan skup ¢e biti nezavrino stanje, jer ne sadrZi ni jedno zavrino stanje
polaznog automata
m Otuda, prazno stanje igra ulogu stanja greske
m Ovo stanje e se automatski kreirati ako je jezik takav da sadrZi nedozvoljene
prefikse
m VAZNO: Ne kreirati ru¢no stanje greske u automatu pre determinizacije, jer e
ga algoritam determinizacije sam kreirati, ako je potrebno
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Sta sa e-prelazima?

m lako po definiciji automati mogu imati i e-prelaze, u dosadadnjim
primerima ih nismo imali
B c-prelazi se obi¢no dobijaju u nekim standardnim konstruktivnim
postupcima koje ¢emo kasnije uditi
m Automati koji sadrZe e-prelaze su po definiciji nedeterministicki
m Pitanje je na koji nadin se konstrukcija po podskupovima moze
primeniti na automate sa e-prelazima?
m Prvi nadin je da se najpre oslobodimo e-prelaza, pa da onda primenimo
konstrukciju po podskupovima
® Drugi nadin je da se eliminacija e-prelaza integriSe u postupak
konstrukcije po podskupovima

m Ovaj drugi pristup je &e¥¢i, ali ¢emo ipak jednim primerom najpre
ilustrovati prvi pristup
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Algoritam eliminacije e-prelaza

m Za svako stanje g € Q formiramo njegovo e-zatvorenje
e(q)={d€Qlq=>q}

m Novi automat Ce za skup stanja imati skup ¢(Q) = {e(q) | g € Q}
(skup svih e-zatvorenja)

m Prelaz (¢(q), a,&(r)) ¢e u novom automatu postojati akko postoji
prelaz (¢', a, r) u starom automatu, za neko ¢’ € (q)

m Poletna stanja novog automata su e-zatvorenja pocetnih stanja
polaznog automata

m Zavrdna stanja novog automata su sva e-zatvorenja koja sadrze bar
jedno zavrsno stanje polaznog automata
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Primer

Posmatrajmo automat:

Imamo da je €(0) = {0,1,2}, e(1) = {1,2}, £(2) = {2}, &(3) = {3}. Ova e-zatvorenja bice stanja novog
automata. Formiranjem odgovarajucih prelaza, dobijamo:

Ovaj automat nema e-prelaza, ali je nedeterministicki.
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Primer

Zbog jednostavnosti notacije, preimenujmo stanja automata dobijenog u prethodnom primeru:
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Determinizacija bez prethodnog uklanjanja e-prelaza

m PaZljivom analizom algoritma konstrukcije po podskupovima vidimo da njemu
e-prelazi ne smetaju

m Naime, setimo se kako smo konstruisali stanje R, u koje prelazimo iz stanja R
po simbolu a: R,={¢’ € Q |Ige R. ¢ = ¢'}

q q aog © 5 2 2 q a / EN
m Klju&no u ovoj formulaciji je da imamo izraunavanje g = q’, a ne prelaz ¢ = g

Otuda, dozvoljena su i videstruka ,,preskakanja” po e-prelazima, kako pre, tako i
posle prelaza po simbolu a
m U nekim knjigama, konstrukcija po podskupovima se definise restriktivnije
(koriste se prelazi umesto izratunavanja): u takvoj formulaciji se algoritam moZe
koristiti samo na automate bez e-prelaza
m Na3a verzija algoritma je proSirena tako da u sebi sadrZi i algoritam eliminacije
e-prelaza
m Da bismo efikasno konstruisali automat A, potrebna su nam e-zatvorenja:
m Potetno stanje automata A &ini unija e-zatvorenja svih pogetnih stanja polaznog
automata A
m Svaki put kada u R, dodamo neko stanje g’, dodajemo i sva stanja iz njegovog
e-zatvorenja
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LF'otpuni deterministiki kona&ni automati

Potpuni deterministi¢ki konaéni automati

Primer

Krenimo ponovo od automata:

Setimo se i njegovih e-zatvorenja: €(0) = {0,1,2}, e(1) = {1,2}, £(2) = {2}, &(3) = {3}. Pofetno stanje &ini
e-zatvorenje poletnog stanja 0 polaznog automata: to je skup {0,1,2}. Sada postupak konstrukcije po
podskupovima primenjujemo kao i ranije, s tim $to uvek zajedno sa nekim stanjem u skup dodajemo i sva stanja
iz njegovog e-zatvorenja. Na primer, iz stanja 3 se pomocu simbola a moZe stic¢i u stanje 1, kao i u sva stanja iz
(1), a tu je jo$ i stanje 2. Otuda Ce svaki prelaz po a iz stanja koje sadrZi stanje 3 obavezno pored stanja 1
sadrZati i stanje 2. Rezultat koji se dobija na kraju je:
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Potpuni deterministi¢ki konaéni automati

Teorema 3

Jezik L je prepoznatljiv akko postoji potpuni deterministicki konacni
automat (PDKA) koji ga prepoznaje.

Dokaz

Teorema sledi iz gore opisanog postupka kojim se za svaki automat moZe
konstruisati njemu ekvivalentan PDKA.

VaZna napomena

Ova teorema ima veoma znacajne posledice na teoriju kona¢nih automata:
ona nam govori da su nam deterministi¢ki automati dovoljni i da
nedeterminizmom u slu€aju kona&nih automata nista ne dobijamo, u smislu
izraZzajnosti. U praksi je ovo veoma pozitivan rezultat, jer deterministicki
automati ne zahtevaju vracanje unazad u implementaciji, te omogucavaju
prepoznavanje re&i u linearnom vremenu (jednim prolaskom kroz ret).
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L Osobine prepoznatljivih jezika

Pregled

Osobine prepoznatljivih jezika
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Osobine prepoznatljivih jezika

Teorema 4

Ako je jezik L prepoznatljiv, tada je i njegov komplement ¥* \ L prepoznatljiv.

Dokaz

Posmatrajmo PDKA (potpuni deterministi¢ki kona&ni automat) A koji prepoznaje jezik L
(ovakav automat uvek postoji). Posmatrajmo automat A€ koji je identi¢an kao i polazni,
s tim Sto su njegova zavr$na stanja postala nezavrsna i obratno. Setimo se da je u
svakom PDKA izraunavanje za svaku re¢ w € ¥* jedinstveno i ono nas odvodi u
Jednozna&no odredeno stanje q(w) € Q. Kako automat A€ ima isto po&etno stanje i iste
prelaze kao i A, stanje q(w) bice isto u ovom automatu kao i u automatu A (za svaku
re¢ w). Medutim, kako smo ovde zamenili zavr$na i nezavrsna stanja, sledi da ée automat
A€ prepoznavati one i samo one rec¢i koje automat A ne prepoznaje.

Primedba

Primetimo da opisanu konstrukciju ne moZzemo primeniti na automate koji nisu potpuni i
deterministi¢ki, jer za njih ne vazi ona primedba o jedinstvenosti izraunavanja

(tj. izratunavanje za neku re¢ w moZe da ne postoji, ili da postoji, a da ne bude
jedinstveno).
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Osobine prepoznatljivih jezika

Posmatrajmo automate:

0 0
OWBOER 0%
O

1
0

0
CEBORNOC
1
Gornji automat je PDKA koji prepoznaje jezik svih binarnih reli koje sadrZe dve

uzastopne nule. Donji automat prepoznaje komplementarni jezik — jezik svih re&i
koje ne sadrZe dve uzastopne nule.
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Osobine prepoznatljivih jezika

Primer

Posmatrajmo automate:

Gornji automat je nedeterministi¢ki automat koji prepoznaje jezik svih re¢i nad
azbukom {a, b} koje se zavrsavaju sa ab. Kako ovaj automat nije PDKA, opisana
transformacija nad njim ne daje ispravan rezultat — donji automat prepoznaje jezik

3 *, sto nije komplement polaznog jezika.
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Osobine prepoznatljivih jezika

Teorema 5

Ako su jezici Ly i Ly prepoznatljivi, tada su i jezici Ly U Ly, Ly N Ly i Ly \ Lo prepoznatljivi.

Dokaz
Neka su Ay = (X, Q1, i, F1,61) i Ay = (£, Q2, iz, F2,02) PDKA koji prepoznaju jezike Ly
i Ly, respektivno. Formirajmo automat A = (X, Q1 X Q2, (i1, i2), F, ), gde je
0((q1, g2), a) = (01(q1, @), 62(qz, a)). Skup zavrinih stanja F zavisi od traZene skupovne
operacije:

m Za uniju: F ={(q1,92) | g1 € F1 V q2 € F2}

n Za presek: F = {(q1, @) | @1 € Fi A > € o}

m Za razliku: F = {(q1,q2) | 1 € FL A q2 & F2}
Lako se moZe proveriti da opisani automat prepoznaje odgovarajuci jezik.

Napomena

Primetimo da se opisanim postupkom moZe dobiti nepotkresan automat, iako su polazni
automati bili potkresani. Otuda nakon ove konstrukcije moZe biti neophodno dodatno
potkresivanje.
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Osobine prepoznatljivih jezika

Primer

Posmatrajmo automate na slici:

Gornji levi automat je PDKA koji prepoznaje jezik svih re¢i koje se zavrSavaju sa ab, dok
Je gornji desni PDKA automat koji prepoznaje jezik svih re¢i koje sadrZe paran broj slova
a. Automat koji prepoznaje presek ova dva jezika (tj. re¢i koje ispunjavaju i jedan i drugi
uslov) dat je u donjem delu slike.
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Osobine prepoznatljivih jezika

Teorema 6

Ako su jezici Ly i Ly prepoznatljivi, tada je i jezik L; - Ly prepoznatljiv.

Teorema 7

Ako je jezik L prepoznatljiv, tada je i jezik L* prepoznatljiv.

Napomena

Dokazi ove dve teoreme slede iz Tompsonove konstrukcije koju ¢emo raditi kasnije, te ih
ovde izostavljamo.

Teorema 8

Svaki regularan jezik je prepoznatljiv (tj. R(X) C P(X)).

Dokaz

Lako se mogu konstruisati automati koji prepoznaju jezike &, {e} i {a}. Sada iz
zatvorenosti klase prepoznatljivih jezika za uniju, dopisivanje i Klinijevo zatvorenje sledi
teorema.
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LKonstrukcija automata po regularnom izrazu

Pregled

Konstrukcija automata po regularnom izrazu
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Konstrukcija automata po regularnom izrazu

Kako odrediti automat koji prepoznaje dati regularni jezik?

m |z prethodne teoreme sledi da se svaki automat opisan
regularnim izrazom moZe prepoznati nekim konaénim
automatom

m Ostaje pitanje efektivne konstrukcije takvog automata

m U nastavku izlaZzemo dve takve konstrukcije: Tompsonovu i
Glugkovljevu konstrukciju
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LTompsonova konstrukcija

Tompsonova konstrukcija

Definicija 5

Automat je normalizovan ako:

m ima tacno jedno pocetno i jedno zavrsno stanje

m ni jedan luk mu ne ulazi u pocetno stanje niti izlazi iz zavr$nog stanja

m iz svakog stanja izlazi ili tatno jedan luk sa etiketom iz ¥ ili najvise
dva luka sa etiketom e

Teorema 9

Za svaki regularni jezik L postoji normalizovan kona&ni automat koji ga
prepoznaje.

Dokaz

Dokaz sledi iz opisa konstrukcije u nastavku koja je poznata i kao
Tompsonova konstrukcija.
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LTompsonova konstrukcija

Tompsonova konstrukcija

Jezik {e}

Jezik {a}
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LTompsonova konstrukcija

Tompsonova konstrukcija

Jezik L1 U Ly

Jezik Ll 0 L2
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Tompsonova konstrukcija

Definicija 6

Obim regularnog izraza r (u oznaci |r|) definiSemo na slede¢i nacin:

m 2| =le[=]a =1

m |n | n|=|n|+|pl+1

[ ] |r1r2| = ‘f1| ar \r2|

m || = = = ||+ 1

Dakle, u pitanju je ukupan broj simbola u izrazu, ne ratunajuci zagrade.

Teorema 10

Neka je dat regularni izraz r obima m sa k simbola iz X u sebi. Automat dobijen
Tompsonovom konstrukcijom je normalizovan i ima najvise 2m stanja i najvise 4m
prelaza, od &ega je ta¢no k ne-c-prelaza.

Dokaz

Ne-e-prelazi odgovaraju slovima (tj. elementima azbuke ) u izrazu, pa je njihov broj
Jednak k. Svaki simbol u regularnom izrazu (ne racujajuéi zagrade) uvodi ta¢no dva nova
stanja pa ukupan broj stanja ne moZe biti veéi od 2m (moZe biti manyji, jer operacijom
dopisivanja stapamo dva stanja u jedno). Takode, svaki simbol uvodi najvise &etiri nova
prelaza. Normalizovanost sledi iz &injenice da svaki od konstruktivnih koraka ¢uva
normalizovanost.
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LTompsonova konstrukcija

Tompsonova konstrukcija

Primer
Neka je dat regularni izraz: (a|b)*aab. Automat dobijen Tompsonovom

konstrukcijom na osnovu ovog izraza je:

Ovaj automat je nedeterministic¢ki. Da bismo ga determinizovali, najpre
odredujemo e-zatvorenja: £(0) = {0,1,2,3,7}, (1) = {1,2,3}, ¢(2) = {2},
e(3) = {3}, ¢(4) ={1,2,3,4,6,7}, (5) = {1,2,3,5,6, 7},

e(6) = {1,2,3,6,7}, e(7) = {7}, e(8) = {8}, £(9) = {9}, £(10) = {10}.
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Tompsonova konstrukcija

Primer

Nakon $to smo odredili e-zatvorenja, primenjujemo konstrukciju po podskupovima i dobijamo
PDKA:

pri &emu je A=¢(0) = {0,1,2,3,7}, B=¢(4) Ue(8) ={1,2,3,4,6,7,8},

C=¢(5) =1{1,2,3,5,6,7}, D =c(4) Ue(8) Ue(9) ={1,2,3,4,6,7,8,9} i

E =¢(5)Ue(10) = {1,2,3,5,6,7,10}. Primetimo da broj stanja dobijenog kona&nog automata
nije tako veliki, s obzirom da u polaznom automatu imamo samo nekoliko ne-e-prelaza koji nam
efektivno odreduju stanja PDKA (svako stanje je unija nekih od e-zatvorenja stanja na kojima

. . . , . b
se zavr§avaju ne--prelazi polaznog automata). Ti prelazi su u ovom primeru 2 2> 4, 3 2 5,

72882995210
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Tompsonova konstrukcija

Primer

Neka je dat regularni izraz: (ab|b*a™)*. Automat dobijen Tompsonovom konstrukcijom na

osnovu ovog izraza je:

Ne-e-prelazi u ovom automatu su 3 £> 4,6 2 7,9 2 10, 10 i> 11, a e-zatvorenja su:

£(0) ={0,1,2,3,5,6,9,13}, (1) = {1,2,3,5,6,9}, ¢(2) = {2,3,5,6}, £(3) = {3},

5(4) = {3,4,5,6}, 5(5) = {576}' 5(6) = {6}' €(7) = {172737576777 8,9,12, 13},

e(8) ={1,2,3,5,6,8,9,12,13}, ¢(9) = {9}, (10) = {10}, ¢(11) = {1,2,3,5,6,9,11,12,13},
e(12) ={1,2,3,5,6,9,12,13}, £(13) = {13}.
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Tompsonova konstrukcija

Primer

Nakon primene konstrukcije po podskupovima dobijamo sledeci automat:

gde je A=(0) = {0,1,2,3,5,6,9,13}, B = £(7) Ue(10) = {1,2,3,5,6,7,8,9,10,12,13},
C =c(4) ={3,4,5,6}, D =¢(7) = {1,2,3,5,6,7,8,9,12,13},
E =e(4)Ue(11) = {1,2,3,4,5,6,9,11,12,13}.
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Tompsonova konstrukcija

Neka je dat regularni izraz: (ab’|ba)T. Automat dobijen Tompsonovom
konstrukcijom na osnovu ovog izraza je:

Ne-e-prelazi u ovom automatu su 2 = 3, 4 LA 57 LA 8, 8% 9, a e-zatvorenja su:
£(0) = {0,1,2,7}, e(1) = {1,2,7}, &(2) = {2}, (3) = {1,2,3,4,6,7,10, 11},
e(4) = {4}, e(5) = {1,2,5,6,7,10,11}, £(6) = {1,2,6,7,10,11}, e(7) = {7},
e(8) = {8}, €(9) = {1,2,7,9,10,11}, ¢(10) = {1,2,7,10, 11}, £(11) = {11}.
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Tompsonova konstrukcija

Primer

Nakon primene konstrukcije po podskupovima dobijamo sledeéi automat:

gde je A=¢(0) ={0,1,2,7}, B=1¢(3) ={1,2,3,4,6,7,10,11}, C =¢(8) = {8},
D =¢e(5)Ue(8) = {1,2,5,6,7,8,10,11}, E = &, F =¢(9) = {1,2,7,9, 10, 11},
G=¢3)ue(9) ={1,2,3,4,6,7,9,10,11}. Primetimo da je E stanje greske.
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Konstrukcija Gluskova

ukcija Gluskova

Neka je dat regularni izraz r. Primenjujemo sledeci postupak:
m Izraz r transformi$emu u linearizovani oblik:
m ovaj oblik dobijamo tako ¥to redom sa leva na desno indeksiramo slova iz ¥ koja se
nalaze u izrazu r indeksima pocev od 1
m Na primer, linearizovani oblik izraza (a|b)*aab je (a1|by)*asasbs
B Za svaki od indeksa u linearizovanom obliku izraza r formiramo po jedno stanje
ozna&eno tim indeksom
m dodatno, imamo i stanje 0 koje je poletno stanje
m Ako je indeksom i u linearizovanom obliku izraza r indeksiran simbol s € ¥, tada ce
svi prelazi koji ulaze u stanje i imati etiketu s
m iz poetnog stanja 0 imamo prelaze ka svim stanjima koja odgovaraju simbolima kojima
moZe potinjati neka re¢ jezika L(r)
m iz stanja i > 0 imamo prelaze ka svim stanjima koja odgovaraju simbolima koji mogu
slediti neposredno nakon simbola koji odgovara stanju i u nekoj reci jezika L(r)
m Zavr¥na stanja dobijenog automata e biti sva ona stanja koja odgovaraju simbolima
kojima se moZe zavr3iti neka re¢ jezika L(r)
m specijalno, stanje 0 Ce biti zavrino akko e € L(r)
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L Konstrukcija Gluskova

Konstrukcija Gluskova

Teorema 11

Automat dobijen konstrukcijom Gluskova ima k + 1 stanje, gde je k
broj simbola iz ¥ koja se pojavljuju u izrazu r (pri &emu se svako
pojavljivanje nekog simbola posebno broji). Pritom, dobijeni automat
nema e-prelaza.

Dokaz

Trivijalno sledi iz opisa konstrukcije.

lako dobijeni automat nema e-prelaza, on ne mora biti (i naj¢edce nije)
deterministi¢ki.
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Konstrukcija Gluskova

Primer

Neka je dat regularni izraz: (a|b)*aab. Linearizovani oblik ovog izraza je
(a1]b2)*azasbs, a automat dobijen konstrukcijom Gluskova je:
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LKc:)nstrukcija automata po regularnom izrazu
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Konstrukcija Gluskova

Primer

Primenom konstrukcije po podskupovima dobijamo PDKA:

gde je A= {0}, B={1,3}, C={2}, D={1,3,4}, E = {2,5}.
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Konstrukcija Gluskova

Primer

Neka je dat regularni izraz: (ab|b*a™)*. Linearizovani oblik ovog izraza je
(a1ba|b}a;)* , a automat dobijen konstrukcijom Gluskova je:
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Konstrukcija Gluskova

Primer

Primenom konstrukcije po podskupovima dobijamo PDKA:

gde je A= {0}, B=1{1,4}, C ={3}, D={2,3}, E = {4}.
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LKc:)nstrukcija automata po regularnom izrazu
LKonstrukcija Glugkova

Konstrukcija Gluskova

Primer

Neka je dat regularni izraz: (ab’|ba)*t. Linearizovani oblik ovog izraza je
(a1bj|bsas)t , a automat dobijen konstrukcijom Gluskova je:
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Konstrukcija Gluskova

Primer

Primenom konstrukcije po podskupovima dobijamo PDKA:

gde je A= {0}, B={1}, C={1,4}, D={2,3}, E=9, F={3} i G = {4}.
Primetimo da je E stanje greske.
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Tompson vs. Glusko

Tompsonova konstrukcija

m Pogodna je za automatizaciju, jer prati strukturu izraza i primenjuje jasno
definisane konstruktivne korake

m Automat koji se dobija obi¢no ima veliki broj e-prelaza, kao i veliki broj
stanja

m Ovo predstavlja poteskocu u postupku determinizacije prilikom ru¢ne
primene (,,na papiru”), ali ne i prilikom implementacije

Glugkovljeva konstrukcija

m Nije pogodna za automatizaciju, ali je lak8a za ruénu primenu

m Konstrukcijom se ne dobijaju e-prelazi, a broj stanja dobijenog automata
je obi¢no znatno manji nego u slu¢aju Tompsonove konstrukcije

m Postupak determinizacije je otuda znatno laksi nad automatom koji je
dobijen Gluskovljevom konstrukcijom
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Pregled

[@ Minimizacija kona&nih automata
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Minimizacija kona¢nih automata

Da li je PDKA za neki jezik jedinstven?

m Odgovor na ovo pitanje je NE
m Vratiti se na primer sa slajda 31: dva razli¢ita postupka determinizacije (sa
prethodnom eliminacijom e-prelaza i bez nje) su nam dala dva razli¢ita
PDKA
m ova dva automata su imala razli¢it broj stanja
m Ova cinjenica oteZava situaciju prilikom ispitivanja ekvivalentnosti
regularnih izraza
m to $to smo za dva regularna izraza dobili razlicite PDKA i dalje ne znati da
ta dva izraza predstavljaju razli¢ite jezike
m Ukoliko zahtevamo da broj stanja PDKA bude najmanji mogudi, da li
¢emo tada imati jedinstvenost?

Definicija 7
PDKA je minimalan (u oznaci MPDKA), ako ne postoji PDKA sa manjim
brojem stanja koji prepoznaje isti jezik.
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LMinimizacija kona&nih automata

Minimizacija kona¢nih automata

Definicija 8

Jezik stanja q € Q (u oznaci Lq) automata A = (X, Q, i, F,d} definiS§emo kao skup
svih re¢i koje su etikete nekog izratunavanja koje polazi iz stanja q i zavrsava u
nekom zavrinom stanju automata. Formalno: Ly = {w | Jc f. c: q = f Af € F}.

Napomena

Kako je u PDKA izraunavanje sa etiketom w koje polazi iz g jedinstveno, vazié¢e
w € Lg akko je stanje f u koje se stiZe tim jedinstvenim izraunavanjem zavr3no.

Primedba
Ako je i € @ potetno stanje PDKA A, tada je L; = L(A).

Definicija 9

Stanja p i q nekog automata su nerazlikujuca akko je L, = L.
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LMinimizacija kona&nih automata

Minimizacija kona¢nih automata

Nerazlikujuéa stanja predstavljaju redunda stanja u automatu

Svaka dva (ili vide) nerazlikujuéa stanja se mogu stopiti u jedno stanje, &ime se broj stanja
smanjuje

Definicija 10
Nerodova ekvivalencija je relacija ekvivalencije medu stanjima automata definisana na sledeéi

nacin: p~q & L, = Lg.

VaZna napomena

MoZe se pokazati da je automat &ija su stanja klase ekvivalencije relacije ~ (tzv. koli¢niki
automat) PDKA sa najmanjim moguéim brojem stanja koji prepoznaje isti jezik kao i polazni
automat:
m Ovaj automat je jedinstven do na izomorfizam
m Otuda imamo postupak odluivanja o ekvivalentnosti dva regularna izraza:
m primenimo Tompsonovu (ili Gludkovljevu) konstrukciju na oba regularna izraza
m determinizujemo dobijene kona&ne automate
m za oba automata odredimo Nerodovu ekvivalenciju ~ i formiramo koli¢ni¢ke automate
m polazni izrazi su ekvivalentni akko su dobijeni MPDKA izomorfni
m Pored toga, minimizacija automata ima i prakti¢ni znataj (lak3e se programira, zauzima
manje memorije, i sl.)
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LMinimizacija kona&nih automata

Minimizacija kona¢nih automata

Kako odrediti relaciju ~

Ideja je da se relacija ~ formira iterativno:

m Neka je Lgk):{w | welgA|w| <k}
m Neka je p ~4 g & Lg() = Lf,k)
Sada vaZe sledeca tvrdenja:
mVkEN.p~g=p~rq=p~k-1q
m VkeN. ~y_ 1D~ O~
m dakle, imamo: ~p2D~1D~pD~3D ... D~
~= ﬂiozo ~k
Jk € N. =gl
ako za neko k vaZi da je ~j=n~ 1, tada Ce vaZiti ~=n~v
p ~o q akko su ili oba ova stanja zavrna ili oba nezavrina
p~1q< p~oqA(Ya€e X i(p,a) ~od(q,a))
pr~2 g pr~1gA(Vae X §(p,a) ~1 (g, a))
B prkqep -1 gA(Ya € X d(p,a) ~k-1(q,a)) (indukcijom)

Postupak minimizacije se sada svodi na iterativno odredivanje relacija ~q, ~1, ~>2, ... dokle god
ima promena, tj. dokle god je ~y7#~+1. Kada to viSe nije slu¢aj, dobijena relacija je upravo
Nerodova ekvivalencija ~. Opisani postupak poznat je i kao Murov algoritam.
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Minimizacija kona¢nih automata

Primer

Dat je automat na slici:

Formirajmo ~ relacije:

~: {AG} | {B,C,DEF}
~1: {AG} | {E}, {B.C,D,F}
~: {A}, {G} | {E}. {B,C,D,F}
~3: {A} {6} | {E}, {B,C. D, F}

Kako je ~o=r3, sledi da je ~=r.
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LMinimizacija kona&nih automata

Minimizacija kona¢nih automata

Primer

KoristeCi klase ekvivalencije dobijene relacije ~ kao stanja, dobijamo sledeci koli¢ni¢ki
automat:

a,b

Ovaj automat je MPDKA ekvivalentan polaznom. Poletno stanje ovog automata
odgovara klasi ekvivalencije kojoj pripada pocetno stanje polaznog automata. Zavrsna
stanja ovog automata su sva stanja koja se sastoje iz zavrSnih stanja polaznog automata.
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LMinimizacija kona&nih automata

Minimizacija kona¢nih automata

Primer

Dat je automat na slici:

Formirajmo ~ relacije:

~o: {A,B,C,D} {E}
~1/ {A7 87 C}, {D} {E}
~2: {A C} {B} {D} | {E}
~3: {A C} {B} {D} | {E}

Kako je ~p=r3, sledi da je ~=rv.
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LMinimizacija kona&nih automata

Minimizacija kona¢nih automata

Primer

Koristeli klase ekvivalencije dobijene relacije ~ kao stanja, dobijamo
sledeci kolicni¢ki automat:

Ovaj automat je MPDKA ekvivalentan polaznom.



Prevodenje programskih jezika — beledke sa predavanja Kona&ni automati

LMinimizacija kona&nih automata

Minimizacija kona¢nih automata

Primer

Dat je automat na slici:

Formirajmo ~ relacije:

~o: {C}| {A,B,D,E}
~1f {C} {B}' {A,D,E}
o {C} {B}r {AvD’E}

Kako je ~1=rv, sledi da je ~=r1.
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LMinimizacija kona&nih automata

Minimizacija kona¢nih automata

Primer

Koristeli klase ekvivalencije dobijene relacije ~ kao stanja, dobijamo sledeci
koli¢ni¢ki automat:

Ovaj automat je MPDKA ekvivalentan polaznom.
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LMinimizacija kona&nih automata

Minimizacija kona¢nih automata

Primer

Dat je automat na slici:

Formirajmo ~ relacije:

~o: {AEF} {B,C,D,G}

~1: {AF}LA{E} [{B,C} {D,G}
~2: {A}, {F}, {E} | {B,C}, {D,G}
~3: {A}L {F}, {E} | {B,C}, {D, G}

Kako je ~p=nr3, sledi da je ~=r.
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LMinimizacija kona&nih automata

Minimizacija kona¢nih automata

Primer

Koristeci klase ekvivalencije dobijene relacije ~ kao stanja, dobijamo
sledeci kolicni¢ki automat:

Ovaj automat je MPDKA ekvivalentan polaznom.
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LMinimizacija kona&nih automata

Minimizacija kona¢nih automata

VaZna napomena

= Murov algoritam ne uklanja nedostiZna stanja, ukoliko postoje
m Otuda je pre postupka minimizacije potrebno potkresati automat, da bi rezultat bio ispravan

Primer

Posmatrajmo automat:

Lako se vidi da u ovom automatu nema nerazlikujucih stanja. Ipak, on nije minimalni PDKA, jer i automat:

a

prepoznaje isti jezik.
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LKonstrukcija regularnog izraza za dati automat

Pregled

Konstrukcija regularnog izraza za dati automat



Prevodenje programskih jezika — beledke sa predavanja Kona&ni automati

LKq:)nstrukcija regularnog izraza za dati automat

Konstrukcija regularnog izraza za dati automat

Da li je svaki prepoznatljiv jezik regularan?

m Ranije smo ustanovili da je svaki regularan jezik prepoznatljiv
(R(X) € P(Y))

Da li vaZi obrnuta inkluzija: P(X) C R(X)?

Drugim recima, da li za svaki kona&ni automat postoji regularni
izraz koji opisuje isti jezik?

Odgovor na ovo pitanje je DA

Dokaz ove &injenice sledi iz postojanja algoritama koji
konstruiSu regularni izraz na osnovu automata:

m Metod eliminacije stanja (izloZen u nastavku)
m Algoritam zasnovan na sistemu jednadina pridruZenih automatu
m Algoritam Mek Notona i Jamade
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LKq:)nstrukcija regularnog izraza za dati automat

Metod eliminacije stanja

Definicija 11
Konaéni automat kod koga etikete prelaza mogu biti proizvoljni regularni izrazi nad ¥ (a ne samo
simboli iz ¥ i €) nazivamo uopsteni konacni automat.

Metod eliminacije stanja

Neka je A proizvoljan PDKA. Posmatrajmo A kao uopsteni kona¢ni automat. Oznacimo sa Rpq
regularni izraz kojim je etiketiran prelaz od p do g (ako postoji). Na ovaj automat primenjujemo sledeéi
postupak:
m Dodajemo jedno novo potetno stanje / i jedno novo zavr3no stanje f (ovo postaju jedino poZetno,
odnosno zavr¥no stanje)
m dodajemo luk od / do (starog) potetnog stanja automata A sa etiketom &
m dodajemo lukove od svih starih zavr3nih stanja automata A do stanja f sa etiketom &
m Eliminisemo jedno po jedno stanje automata (izuzev i i f) u proizvoljnom poretku na sledeéi nacin:
m oznacimo stanje koje Zelimo da eliminisemo sa g
. . 0 - o Roq q Rar
m neka su p i r dva stanja razli¢ita od g takva da postoji lukovi p — qi g —r
- - RoqRqRar | Ror
m ova dva luka zamenjujemo novim lukom p
. . Raq .y R " . . . .
m opciono, ako neki od lukova g — q (petlja) i p — r ne postoji, odgovarajuéi deo izraza se izostavlja
m ovo uradimo za svaka takva dva stanja p i r (ne obavezno medusobno razli¢ita)
m Kada ostanu samo stanja i i f, luk koji ih spaja bice etiketiran regularnim izrazom Rjs koji opisuje
jezik polaznog automata
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LKc:)nstrukcija regularnog izraza za dati automat

Metod eliminacije stanja

Posmatrajmo automat na slici:

b b ab

Uvedimo najpre nova poletna i zavrina stanja:
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LKc:)nstrukcija regularnog izraza za dati automat

Metod eliminacije stanja

Primer

(nastavak) Zatim eliminiSemo stanje 1 tako $to formiramo luk od i do 2

a,b

i 2
C b*ab*a € @

Najzad eliminiSemo i stanje 2, uvodenjem luka od i do f:

@ b*ab*a(alb)* @

Regularni izraz nad ovim lukom opisuje jezik polaznog automata.




Prevodenje programskih jezika — beledke sa predavanja Kona&ni automati

LKc:)nstrukcija regularnog izraza za dati automat

Metod eliminacije stanja

Primer

Posmatrajmo automat na slici:
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LKc:)nstrukcija regularnog izraza za dati automat

Metod eliminacije stanja

Primer

(nastavak) Sada eliminiSemo stanje 1:

ab*alb

a zatim i stanje 0:

(ab*alb)*

Dobijeni regularni izraz opisuje jezik automata.
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LKq:)nstrul«:ija regularnog izraza za dati automat

Metod eliminacije stanja

Napomena

m lako je teorijski potpuno svejedno u kom poretku se eliminisu
stanja, dobijeni regularni izraz ¢e zavisiti od izabranog poretka
m Setimo se da moZemo imati razli¢ite regularne izraze koji
opisuju isti jezik
m U praksi, izborom ,,pravog” poretka dobijamo jednostavniji
regularni izraz
m Ne postoji egzaktan metod koji nam odreduje poredak koji
daje najjednostavniji izraz
m Dobra heuristika: elimini§emo prvo stanje koje zahteva
dodavanje najmanjeg broja novih lukova
m Zadatak: pokuSajte da u prethodnom primeru prvo eliminiSete
stanje 0
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LKc:)nstrukcija regularnog izraza za dati automat

Metod eliminacije stanja

Napomena

m Novo pocetno stanje i je neophodno uvoditi da bismo postigli
da ni jedan luk ne ulazi u pofetno stanje automata
m Ako je to slu¢aj ve¢ u polaznom automatu, tada se stanje i ne
mora uvoditi, $to pojednostavljuje postupak
m Sli¢no, novo zavrdno stanje f se uvodi da bismo postigli da
imamo ta¢no jedno zavrsno stanje iz koga ne izlazi ni jedan
luk

m ako je ovo ispunjeno u polaznom automatu, onda stanje f ne
moramo uvoditi
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LKc:)nstrukcija regularnog izraza za dati automat

Metod eliminacije stanja

Posmatrajmo automat na slici:
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LKc:)nstrukcija regularnog izraza za dati automat

Metod eliminacije stanja

Primer

(nastavak) Sada eliminiSemo stanje 1:

a zatim i stanje 2:

ab

a a+b | b+a .

Najzad, eliminiSemo i stanje 3:

(B

Dobijeni regularni izraz opisuje jezik automata.
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LKc:)nstrukcija regularnog izraza za dati automat

Metod eliminacije stanja

Primer

Posmatrajmo automat na slici:
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LKc:)nstrukcija regularnog izraza za dati automat

Metod eliminacije stanja

Primer

(nastavak) Sada eliminisemo stanje 4 (,,stanje greske”):

a zatim i stanje 3:
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LKc:)nstrukcija regularnog izraza za dati automat

Metod eliminacije stanja

(nastavak) Zatim eliminiSemo stanje 1:

ba|a+b

a zatim i stanje 2:

@ a+ | (ba | a+tb)+a* @

Dobijeni regularni izraz opisuje jezik automata.
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LKc:)nstrukcija regularnog izraza za dati automat

Klinijeva teorema

Klase regularnih i prepoznatljivih jezika se poklapaju, tj.:
R(X) = P(X).

Dokaz

Implikacija R(X) C P(X) je dokazana ranije (npr. Tompsonova
konstrukcija). Metod eliminacije stanja je dokaz da vaZi i drugi
smer P(¥X) C R(X). Otuda vaZi gornja skupovna jednakost.

Napomena

Ova teorema poznata je i kao Klinijeva teorema i najzna&ajnija je
teorema u teoriji regularnih jezika i kona¢nih automata.
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LKc:)nstrukcija regularnog izraza za dati automat

Jedan zanimljiv primer

Sta je starije, automat ili izraz?

m U vecini slu¢ajeva nam je zgodnije da najpre jezik opisemo
regularnim izrazom, pa da za njega konstruiS§emo automat

m Ipak, ponekad nije tako lako opisati jezik regularnim izrazom,
ali je lako napraviti automat koji ga prepoznaje

m Tada moZemo napraviti automat, a onda metodom eliminacije
stanja dobiti regularni izraz (ako nam je uopste potreban)
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LKc:)nstrukcija regularnog izraza za dati automat

Jedan zanimljiv primer

Primer

Zelimo da regularnim izrazom opiemo jezik svih binarnih brojeva koji su
deljivi sa 3. Da bismo to uradili, posmatracemo na koji se na¢in menja
ostatak pri deljenju sa 3 kada na neki binarni broj dopisemo cifru 0 ili 1.
Oznacimo sa w tekucu binarnu re¢. Neka je w0 odnosno wl re¢ koja se
dobija dopisivanjem 0 odnosno 1 na w. Ozna&imo sa x binarni broj koji je
predstavljen zapisom w. Tada zapis w0 predstavlja broj 2x, a wl
predstavlja broj 2x + 1. Sada vaZi:

m Ako jex mod 3=0, tada je2x mod3=0,a2x+1 mod3=1
m Ako jex mod 3 =1, tada je2x mod3=2,a2x+1 mod3=0
m Ako jex mod 3 =2, tada je2x mod3=1,a2x+1 mod3=2

Imajuéi ovo u vidu, formiramo automat (na sledecem slajdu).
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LKc:)nstrukcija regularnog izraza za dati automat

Jedan zanimljiv primer

Prim

(nastavak) TraZeni automat je:
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LKc:)nstrukcija regularnog izraza za dati automat

Jedan zanimljiv primer

Primer

(nastavak) Sada eliminiSemo stanje 0

10%1

a zatim | stanje 2:

10%1]01%0
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LKc:)nstrul»«:ija regularnog izraza za dati automat

Jedan zanimljiv primer

Primer

(nastavak) Na kraju eliminisemo stanje 1:

@ 0+ (1| 0+1)(10%1 | 01%0)*10* @
e

Dobijeni regularni izraz opisuje traZeni jezik.
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L Lema o razrasta nju

Pregled

B Lema o razrastanju
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L Lema o razrastanju

Lema o razrastanju

Setimo se leme o razrastanju koju smo ranije naveli bez dokaza:

Neka je L regularan jezik. Tada postoji neko p € N (koje zavisi
samo od jezika L), takvo da za svaku re¢ w € L za koju je |w| > p
vaZi da se w moZe predstaviti u obliku w = xzy, gde je |z| > 1,
Ixz| < pixzKy € L za svako k € N.

Sada kada poznajemo kona&ne automate, mozemo da dokaZemo
ovu lemu sasvim jednostavno.
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Lema o razrastanju

Neka je A jedinstveni MPDKA koji prepoznaje dati regularni jezik L. Neka
je p broj stanja ovog automata i neka je w bilo koja re¢ jezika L duZine
bar p. Postoji jedinstveno izralunavanje ¢ : s = f, gde je s pocetno, a f
jedno od zavrsnih stanja automata A. Kako je re¢ w duZine bar p, ovo
izra¢unavanje ¢e bar dva puta proci kroz jedno isto stanje,

o g 2 0 Gno o a a; a; aj aj+1

tj. izradunavanje ¢ mora biti oblika: s = q1 = g0 = ... L g —
di42 & Bl aj+2 an : _

Giy1 —> ... = qi —> Q41 — ... — f, gde jew = ajay...a,.

Pritom, prvo ponavljanje stanja mora biti nakon najvise p koraka, tj. j < p.
Sada moZemo uzetix = ay...a;, Z=aj41...3j iy = ajy1...ap. Za
ovakvu podelu re¢i vaZiée |z| > 1 i |xz| = j < p. Pritom, re¢ z automat
vodi od stanja q; ponovo do stanja q;, pa se ova re¢ moZe na tom mestu
ponavljati 0 ili viSe puta, ne remeteci ostatak izra¢unavanja. Otuda e
svaka re¢ oblika xz¥y biti u jeziku L (k =0,1,2...).
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