Prevodjenje programskih jezika — beleske sa predavanja Uvod

Prevodjenje programskih jezika — beleske sa

predavanja
Uvod

Milan Bankovié

*Matematizki fakultet,
Univerzitet u Beogradu

Jesenji semestar 2025/26.

Prevodjenje programskih jezika — bele$ke sa predavanja Uvod
L Uvod

Pregled

Uvod

Prevodjenje programskih jezika — bele$ke sa predavanja Uvod
L Uvod
L Motivacija

Motivacija

Cime se bavimo?

m Do sada ste naudili da programirate na programskim jezicima
visokog nivoa (C, Java, C++)

m Naudili ste i kako ratunar radi na niskom nivou (UOAR?2), i na
koji natin se sa njim moZze komunicirati (masinski jezik,
asembler)

m Svaki program na visokom nivou se mora prevesti na masinski
jezik koji procesor razume, kako bi mogao da se izvrSi

m Ovaj deo je ostao nerazjasnjen: kako da npr. C program
prevedemo na ekvivalentan asemblerski program?

m Time se bavimo na ovom predmetu

Prevodjenje programskih jezika — bele$ke sa predavanja Uvod

L Uvod

L Sadrzaj predmeta

SadrZaj predmeta

Teme kojima se bavimo

Uvod u teoriju formalnih jezika
Regularni izrazi

Formalne gramatike

Kona¢ni automati

Leksi¢ka analiza

Potisni automati

Sintaksna analiza (naniZe i navise)
Elementi semantic¢ke analize

Teme kojima se ne bavimo

Optimizacija koda
Generisanje koda
O tome cete utiti na predmetu Konstrukcija kompilatora

Prevodjenje programskih jezika — bele$ke sa predavanja Uvod
L Uvod
L Obaveze studenata

Obaveze studenata

m 2 ¢asa predavanja
m 3 Casa vezbi
m 6 ESPB

Predispitne obaveze

m Aktivno prisustvo na &asovima (5 + 5 poena)
m Testovi na predavanjima (10 poena)

Ispit

m Prakti¢ni ispit (55 poena, prag 22 poena)
m vazi do kraja ¥kolske godine
m Teorijski ispit (35 poena, prag 14 poena)
m uslov za izlazak je ostvaren prag na prakti¢nom

Prevodjenje programskih jezika — bele$ke sa predavanja Uvod

L Proces prevodjenja programa

Pregled

Proces prevodjenja programa

Prevodjenje programskih jezika — bele$ke sa predavanja Uvod
L Proces prevodjenja programa

LO jezicima uopste

O jezicima uopste

Osnovne karakteristike jezika

m Sintaksa jezika
m Skup pravila koja definiSu ispravne jezitke konstrukcije
m Semantika jezika
m Pravila koja definiSu zna&enje ispravnih jezi¢kih konstrukcija

Kakvi jezici mogu biti?

m Prirodni jezici (srpski, engleski, kineski,...)
m Sintaksa nedovoljno precizno definisana
m Semantika nije jednozna¥na (postoje dvosmislene i besmislene re€enice)
m Formalni jezici (programski jezici, jezici za obeleZavanje, jezici
matemattke logike, ...)
m Sintaksa precizno definisana odgovarajué¢im formalizmom (gramatika,
Bekus-Naurova notacija,...)
m Semantika jednozna&na (svaka ispravna konstrukcija ima jedinstveno
znakenje)

Prevodjenje programskih jezika — bele$ke sa predavanja Uvod

L Proces prevodjenja programa

LOp§ta struktura prevodioca

Opsta struktura prevodioca

Delovi prevodioca

m Prednji deo: obavlja etapu analize

m Ulaz prednjeg dela je program na visem programskom jeziku
(izvorni jezik)

m |zlaz prednjeg dela je stablo apstraktne sintakse sa pridruzenim
semantiskim informacijama

m Zadnji deo: obavlja etapu sinteze

m Ulaz zadnjeg dela je izlaz prednjeg dela
m lzlaz zadnjeg dela je program na jeziku niskog nivoa (objektni
jezik; tipi¢no asemblerski jezik)

Prevodjenje programskih jezika — bele$ke sa predavanja Uvod
L Proces prevodjenja programa

LEtapa analize

Etapa analize

Iz ¢ega se sastoji etapa

m Leksi¢ka analiza
m RazlaZe izvorni kod programa na lekseme (,,reci” jezika)
m Primeri leksema su identifikatori, celobrojne konstante, klju&ne reti, separatori,
operatori, i td.
m Svaka leksema se klasifikuje po svojoj vrsti i zamenjuje odgovarajuc¢im tokenom koji
predstavlja tu klasu (identifikator, celobrojna konstanta, itd.)
m Dobijeni niz tokena se prosledjuje sintaksnom analizatoru
m Sintaksna analiza
m Dobija na ulazu niz tokena i u njemu prepoznaje ispravne jezitke konstrukcije
(,,recenice” jezika)
m Proverava da li je raspored tokena na ulazu u skladu sa sintaksnim pravilima jezika
m Pravila jezika najéesce su opisana u nekom formalnom sistemu (gramatike,
Bekus-Naurova notacija)
m Na osnovu pravila jezika generie se stablo izvodenja, kao i apstraktno sintaksno stablo
m Semanti¢ka analiza
m Razmatraju se dodatna jezi¢ka pravila koja nije moguée opisati gramatikom (tipovi,
dometi, prava pristupa, i sl.)
m Odgovarajuée semantitke informacije se pridruZuju ¢vorovima sintaksnog stabla i ono se
po potrebi modifikuje

Prevodjenje programskih jezika — bele$ke sa predavanja Uvod
L Proces prevodjenja programa

LEtapa analize

Primer — leksi¢ka analiza

Primer

Ako na ulazu imamo:

Povrsina = (OsnovicaA + OsnovicaB) * Visina / 2.0;
tada Ce leksi¢ki analizator redom prepoznati sledeli niz leksema:
Povrsina, =, (, Osnovical, +, OsnovicaB,), *, Visina, /, 2.0,
5

Primetimo da se razmaci ignorisu. Ovaj niz leksema se konvertuje
u slededi niz tokena:

<id>, <op_dodela>, <1z>, <id>, <op_sabiranje>, <id>, <dz>,
<op_mnozenje>, <id>, <op_deljenje>, <realna_konstanta>,
<tz>

Prevodjenje programskih jezika — bele$ke sa predavanja Uvod
L Proces prevodjenja programa

LEtapa analize

Primer — leksi¢ka analiza

Primer

Ako na ulazu imamo:

Olpera01

tada Ce leksicki analizator redom prepoznati sledeci niz leksema:
01, pera01

kom odgovara niz tokena:

<oktalna_konstanta>, <id>

Primer

Ako na ulazu imamo:

X+++y

tada Ce leksi¢ki analizator prepoznati sledeéi niz leksema:

X, ++, +, y

(tzv. gramzivi algoritam, uzima najduZu mogucu leksemu koju
prepoznaje). Sa druge strane, ako imamo:

X + ++y

tada imamo niz leksema:

X, +, ++, ¥

Prevodjenje programskih jezika — bele$ke sa predavanja Uvod

L Proces prevodjenja programa

LEtapa analize

Primer — sintaksna analiza

Vratimo se na primer:

Povrsina = (OsnovicaA + OsnovicaB) * Visina / 2.0;

i dobijeni niz tokena:

<id>, <op_dodela>, <1z>, <id>, <op_sabiranje>, <id>, <dz>,
<op_mnozenje>, <id>, <op_deljenje>, <realna_konstanta>, <tz>

koji prosledjujemo sintaksnom analizatoru. Pretpostavimo da imamo sledeca
sintaksna pravila jezika:

Naredba ::= Izraz <tz>

Izraz : Izraz <op_sabiranje> Izraz
Izraz Izraz <op_oduzimanje> Izraz
Izraz ::= Izraz <op_mnozenje> Izraz
Izraz ::= Izraz <op_deljenje> Izraz
Izraz ::= <1z> Izraz <dz>

Izraz ::= <id> <op_dodela> Izraz
Izraz ::= <id>

Izraz <celobrojna_konstanta>

Izraz <realna_konstanta>

Prevodjenje programskih jezika — bele$ke sa predavanja Uvod
L Proces prevodjenja programa

LEtapa analize

Primer — sintaksna analiza (nastavak)

Pomocu ovih pravila, od datog niza tokena se moZe formirati sledece stablo

izvodjenja:
Naredba
________ / N
/ \
Izraz <tz>
_______ /N o
/ | \
<id> <op_dodela> Izraz
_______ Y2 I N,
/ | \
Izraz <op_deljenje> Izraz
______ /N |
/ | \ |
Izraz <op_mnozenje> Izraz <realna_konstanta>
-/ 1 __ |
/ | \ |
<lz> Izraz <dz> <id>
VA B U
/ | \

Izraz <op_sabiranje> Izraz
| |

<id> <id>

Prevodjenje programskih jezika — bele$ke sa predavanja Uvod
L Proces prevodjenja programa

LEtapa analize

Primer — sintaksna analiza (nastavak)

Apstrahujudi detalje konkretne sintakse, dobijamo sledece stablo apstraktne sintakse:

<op_dodela>

__________ / AN
/ \
<id> <op_deljenje>
__________ / N\~
/ \
<op_mnozenje> <realna_konstanta>
_____ / AN
/ \
<op_sabiranje> <id>
________ / N\~
/ \

Prevodjenje programskih jezika — bele$ke sa predavanja Uvod
L Proces prevodjenja programa

LEtapa analize

Primer — sintaksna analiza

Naredba:

if(x > y) max = x; else max = y;

Je sintaksno ispravna konstrukcija u jeziku C. Sa druge strane:

if)x > y) max = x; else max = y;

nije sintaksno ispravna konstrukcija, jer se, po pravilima jezika, nakon
tokena <if> mora nalaziti token <1z> (leva zagrada), a ne token <dz>
(desna zagrada). Sli¢no, deklaracija:

int x[] = {1, 2, 3};

Je sintaksno ispravna u C-u, dok deklaracija:

int [J x = {1, 2, 3};

nije sintaksno ispravna u jeziku C, jer se po pravilima jezika u
deklaratoru specifikator dimenzije niza navodi iza promenljive (ili
nekog drugog sloZenog deklaratora), a ne ispred.

Prevodjenje programskih jezika — bele$ke sa predavanja Uvod
L Proces prevodjenja programa

LEtapa analize

Tabela simbola

Tabela simbola

m U fazi leksitke analize apstrahovali smo konkrente lekseme i zamenili ih
tokenima

m Ovo je zato $to u fazi sintaksne analize nije bitno da |i je
npr. identifikator x ili y, ve¢ je samo bitno da li identifikator moZe da
stoji na tom mestu

m U fazi semantitke analize (a i kasnije, u etapi sinteze) bi¢e nam veoma
bitno koji konkretan identifikator stoji na kom mestu

m Zbog toga se te apstrahovane informacije ne odbacuju, veé se €uvaju uz
svaki token i koriste se kasnije za pristup informacijama u tabeli simbola

m Tabela simbola identifikatorima pridruZuje informacije koje se odreduju u
fazi semantitke analize

m Informacije koje se pridruzuju identifikatorima u tabeli simbola su
npr. njihov tip i domet koji se odredjuje njihovom deklaracijom

m Ove informacije se prosleduju dalje zadnjem delu prevodioca (etapa
sinteze)

Prevodjenje programskih jezika — bele$ke sa predavanja Uvod
L Proces prevodjenja programa
L*Etapa analize

Primer — semanti¢ka analiza (nastavak)

Pretpostavimo u prethodnom primeru da su promenljive OsnovicaA, OsnovicaB i
Visina deklarisane kao int promenljive, a Povrsina kao double promenljiva. U fazi
semanticke analize e se prepoznati da operator deljenja ima operande razli¢itog tipa, te
Ce se u stablo umetnuti operator konverzije int_u_double { implicitna konverzija)

<op_dodela>

/ \
<id> <op_deljenje>
\
/ \
<int_u_double> <realna_konstanta>
|

<op_mnozenje>

<op_sabiranje> <id>
\
/ \
<id> <id>

NAPOMENA: Kod strogo tipiziranih jezika (poput Pascal-a), bice prijavljena semanti¢ka
greska.

Prevodjenje programskih jezika — bele$ke sa predavanja Uvod
L Proces prevodjenja programa

LEtapa analize

Uloge semanti¢kog analizatora

Sta sve radi semantizki analizator?

m Obradjuje naredbe deklaracija i informacije o tipovima promenljivih i funkcija sme&ta
u tabelu simbola

m Utvrdjuje domete deklaracija, kao i prava pristupa u OOP jezicima (private,
protected, public)

m Na osnovu prikupljenih informacija iz deklaracija proverava ispravnost upotrebe
identifikatora u razli¢itim kontekstima

m U programskim jezicima gde je to dozvoljeno, umece implicitne konverzije gde je to
mogude

m Odredjuje tipove sloZenih izraza

m Proverava ispravnost funkcijskih poziva (s obzirom na tipove argumenata i tip
povratne vrednosti)

m Proverava ispravnost upotrebe pojedinih naredbi u odredjenim kontekstima (poput
break i continue u C-u)

m Proverava da |i se tip izraza koji funkcija vraca (npr. naredbom return u C-u)
poklapa sa deklarisanim povratnim tipom i po potrebi umece konverziju (ako jezik to
dozvoljava)

m U jezicima koji to omogucavaju, vr3i dedukciju tipova identifikatora (npr. u C++-u,
Haskell-u itd.)

Prevodjenje programskih jezika — bele$ke sa predavanja Uvod
L Proces prevodjenja programa

LEtapa analize

Primer — semanti¢ka analiza

Primer

Pretpostavimo da u jezik C imamo izraz a+b pri &emu su promenljive a i b
strukturnog tipa. Ovaj izraz je sintaksno ispravan, ali je semanti¢ki neispravan, jer
strukture nije moguce sabirati u jeziku C.

Primer

Pretpostavimo da u jeziku C imamo naredbu x = 3;, pri emu deklaracija
promenljive x nije u dometu (ili ne postoji). Naredba je sintaksno ispravna, ali je
semanticki neispravna, jer se u C-u promenljive mogu koristiti samo u dometu
odgovarajuce deklaracije.

Primer

Pretpostavimo da u jeziku Java imamo naredbu c.x = 5;, gde je c instanca klase
MojaKlasa, a x njen privatni ¢lan tipa int. Ukoliko se naredba nalazi u metodi neke
druge klase, tada Ce biti prijavijena greska, iako je naredba sintaksno ispravna.

Primer

Pretpostavimo da u jeziku C imamo naredbu continue; koja se ne nalazi unutar
petlje. lako je ovo sintaksno ispravna naredba (u skladu sa pravilima gramatike
Jezika C), na tom mestu ona semantitki nema smisla, te ¢e semanticki analizator
prijaviti gresku.

Prevodjenje programskih jezika — bele$ke sa predavanja Uvod

L Proces prevodjenja programa

LEtapa analize

Primer — semanti¢ka analiza

Primer

Naredba:

if(x == y) continue;

Jje sintaksno ispravna konstrukcija u jeziku C, iako ne mora biti i
semanti¢ki ispravna (jer se naredba continue ne moZe koristiti van
petlje). Sa druge strane, naredba:

if(x = y) x++;

Je sintaksno (&ak i semanti¢ki) ispravna konstrukcija u jeziku C,
iako obi¢no nije ono sto Zelimo.

Prevodjenje programskih jezika — bele$ke sa predavanja Uvod
L Proces prevodjenja programa

L Etapa sinteze

Etapa sinteze

Faze u etapi sinteze

m Generisanje koda na medjujeziku

m Ovaj jezik je blizak asembleru, ali je nezavisan od konkretnog hardvera i pogodan

je za optimizaciju

m Tipi¢no je u pitanju troadresni kod ili stek-zasnovani kod
m Optimizacija koda

m Evaluacija konstantnih izraza

m Eliminacija neproduktivnog koda

m Optimizacija petlji

m Eliminacija skupih operacija

[

[

Eliminacija zajedni¢kih podizraza
Eliminacija repne rekurzije
.
m Generisanje objektnog koda
m Alokacija registara
m Optimizacija zavisna od masine

Prevodjenje programskih jezika — bele$ke sa predavanja Uvod
L Proces prevodjenja programa

L Etapa sinteze

Primer

Primer

Podsetimo se dobijenog stabla apstraktne sintakse u nasem primeru:

<op_dodela>

__________ / N
/ \
<id> <op_deljenje>
__________ / N
/ \
<int_u_double> <realna_konstanta>
[
<op_mnozenje>
_____ / N
/ \
<op_sabiranje> <id>
/ \
/ \

<id> <id>

Prevodjenje programskih jezika — bele$ke sa predavanja Uvod
L Proces prevodjenja programa

L Etapa sinteze

Primer (nastavak)

Na osnovu ovog stabla, polazeci od listova ka korenu, generiSemo kéd na
medjujeziku poput sledeceg:

tl := OsnovicaA INT_ADD OsnovicaB

t2 := t1 INT_MUL Visina
t3 := INT_TO_REAL t2

t4 := t3 REAL_DIV 2.0
Povrsina := t4

Tokenima <id> i <realna_konstanta> u listovima stabla pridruZuju se
identifikatori i konstante koje im odgovaraju u tabeli simbola. Promenljive
t1, to, t3, ta su pomocne promenljive koje odgovaraju vrednostima
unutrasnjih &vorova stabla. Svakom unutrasnjem &voru odgovara jedna
operacija u medjukédu. Izbor operacije zavisi od tipa vrednosti na koje se
primenjuje, $to opet znamo na osnovu informacija prikupljenih u fazi
semanticke analize.

Prevodjenje programskih jezika — bele$ke sa predavanja Uvod
L Proces prevodjenja programa
tapa sinteze
LE pa si

Primer (nastavak)

Nakon optimizacije, gornji medjukdd se prevodi u kéd na konkretnom asemblerskom
Jjeziku. U zavisnosti od arhitekture, svakoj naredbi medjukéda moZe odgovarati jedna
ili vise instrukcija asemblerskog jezika. Veoma bitan postupak ovde je alokacija
registara, kojima se promenljivama iz prethodnog kéda pridruZuju registri. Cilj je da
Sto vise promenljivih budu u registrima, kako bi se smanjio broj pristupa memoriji.
Na x86-64 arhitekturi, gornji kod bi se mogao prevesti na sledeci nacin:

two: .double 2.0

mov eax, OsnovicaA
add eax, OsnovicaB
imul dword ptr Visina
cvtsi2sd xmmO, eax
divsd xmmO, two

movsd Povrsina, xmmO

Prevodjenje programskih jezika — bele$ke sa predavanja Uvod

LInterpreta\cija i kompilacija

Pregled

Interpretacija i kompilacija

Prevodjenje programskih jezika — bele$ke sa predavanja Uvod

LInterpreta\r:ija i kompilacija

Interpretacija i kompilacija

Kompilacija

Prethodno opisani postupak se naziva kompilacija

Ulaz kompilatora (ili kompajlera) je program na izvornom jeziku (izvorni kéd)
Izlaz kompilatora je program na objektnom jeziku (objektni kéd)

Kompilator ne izvrSava program, ve¢ generiSe semanticki ekvivalentan program
na drugom jeziku (prevod izvornog programa)

Interpretacija

Interpretacija podrazumeva izvrSavanje operacija koje u semanti¢kom smislu
odgovaraju naredbama datog programa na odredjenoj platformi

Ulaz interpretatora je program koji treba izvrsiti, kao i ulaz na koji taj program
treba primeniti

Izlaz interpretatora je izlaz programa za dati ulaz

Interpretator ne generide kéd na drugom jeziku, ve¢ samo tumadi naredbe
izvornog programa i preduzima akcije kojima se simulira njihov efekat na datoj
platformi

Za razliku od kompilacije, interpretacija uklju€uje samo etapu analize, dok
etapa sinteze ne postoji

Prevodjenje programskih jezika — bele$ke sa predavanja Uvod

LInterpretacija i kompilacija

Interpretacija i kompilacija

Jo¥ o interpretaciji

m Prethodna definicija interpretatora je veoma opsta i uklju€uje mnogo razli€itih stvari

m Na primer, procesor se moZe smatrati (hardverskim) interpretatorom masinskog
jezika

m U tom slu¢aju, platforma na kojoj procesor izvrsava semanticke akcije koje
odgovaraju masinskim instrukcijama je putanja podataka u njemu (engl. datapath)

m U klasi€¢nom smislu, (softverski) interpretator predstavlja program koji analizira
naredbe nekog drugog programa, tumadi ih i izvrS8ava njihov efekat na datoj
hardverskoj arhitekturi

m Interpretator implementira etapu analize izvornog programa, a nakon Sto se dobije
sintaksno stablo, umesto generisanja kdda izvrSava se efekat odgovarajuce
programske konstrukcije

m Interpretator u tabeli simbola odrzava i vrednosti promenljivih koje se menjaju tokom
izvr8avanja naredbi programa

m U naSem primeru, interpretator bi, prateci stablo izraza
Povrsina = (OsnovicaA + OsnovicaB) * Visina / 2.0, a na osnovu
trenutnih vrednosti promenljivih u tabeli simbola, izraéunao vrednost desne strane i
upisao je u tabelu simbola kao novu vrednost promenljive Povrsina

Prevodjenje programskih jezika — bele$ke sa predavanja Uvod

LInterpreta\cija i kompilacija

Interpretacija i kompilacija

Kompilacija

m Primeri tipi¢nih kompilatorskih jezika su C, C++, Fortran, i sl.

m Programi koji se kompiliraju prevode se na masinski jezik, a onda se direktno
izvr8avaju na procesoru (potencijalno veliki broj puta)

m Ponovno prevodjenje je neophodno samo ako se nesto menja u izvornom programu

Kompilirani programi su obiéno znatno brzi od interpretiranih

Nedostatak je ¢esto manjak fleksibilnosti (npr. kompilatorski jezici su obi¢no staticki

tipizirani)

Interpretacija

m Primeri tipi¢nih interpretatorskih jezika su Perl, PHP, Python, JavaScript, i sl.

m Interpretacija je drasti¢no sporija od direktnog izvrSavanja prevedenog kdda
(program se svaki put iznova analizira)

m Interpretatorski programski jezici su &esto fleksibilniji i jednostavniji za programiranje

Zbog toga su narotito pogodni za brzo reSavanje rutinskih zadataka

m Usled napretka interpretatora, u novije vreme interpretatorski jezici se koriste i kod
obimnijih softverskih projekata

m Ipak, ogranieni su na primene kod kojih brzina nije tako bitna

Prevodjenje programskih jezika — bele$ke sa predavanja Uvod

LInterpretacija i kompilacija

Interpretacija i kompilacija

Hibridni pristup

m Postoje i jezici kod kojih se koristi hibridni pristup:
m program se sa izvornog jezika prevodi na neki medjujezik i generise
se odgovarajuc¢i medjukdd koji se ¢uva na disku
m posebnim interpretatorom se vrsi interpretacija tog medjukoda kad
god se pokrene program
m Tipiéni primeri ovakvih jezika su Java i C#:
m Java programi se prevode na medjukod koji se naziva jos i Java
bajtkod
m Java virtuelna magina (JVM) se koristi da se prilikom pokretanja
dobijenog programa interpetira bajtkod na procesoru racunara
m Sli¢no, C# programi se prevode na jezik poznat kao CIL (Common
Intermediate Language).
m Interpretator CIL jezika koji je deo .NET okruZenja intepretira
ovako dobijene programe i izvrSava ih na procesoru raunara

Prevodjenje programskih jezika — bele$ke sa predavanja Uvod

LInterpreta\r:ija i kompilacija

Interpretacija i kompilacija

Hibridni pristup

m Cak i klasi¢ni interpretatorski jezici (poput Python-a, PHP-a, Perl-a ili
JavaScript-a) danas uglavnom koriste kombinaciju interpretacije i
kompilacije:

m kod se interno prevodi na neki medjujezik koji se zatim interpretira

m Ovakve tehnike omoguéavaju brzu kompilaciju, veéi stepen optimizacije

kdda i poboljsavaju efikasnost interpretacije

Kompilacija na licu mesta

m Tokom interpretacije, esto koriséeni delovi koda se prevode na masinski
jezik i izvrSavaju se direktno na procesoru
m Ovakav pristup je poznat kao kompilacija na licu mesta (engl. just-in-time

(Jrm)).

m Najéesce se primenjuje prilikom interpretacije medjujezika.

Prevodjenje programskih jezika — bele$ke sa predavanja Uvod

LInterpreta\r:ija i kompilacija

Zaklju¢ak

Cime se mi bavimo?

U okviru ovog kursa detaljno se obradjuju faze analize koda

Znanje ste¢eno na ovom predmetu je, stoga, dovoljno da se
konstruiSu jednostavni interpretatori

Etapa sinteze se ne obradjuje u okviru ovog predmeta

m Otuda, na ovom predmetu necete nauditi da konstruidete
kompilatore

m Predmet Konstrukcija kompilatora se dataljnije bavi etapom
sinteze

	Uvod
	Motivacija
	Sadržaj predmeta
	Obaveze studenata

	Proces prevodjenja programa
	O jezicima uopšte
	Opšta struktura prevodioca
	Etapa analize
	Etapa sinteze

	Interpretacija i kompilacija

